
Nymi SDK for WebAPI on
Windows Developer's Guide

Nymi Connected Worker Platform
v1.0

2023-05-05

Contents

Preface... 3

Nymi SDK Overview...6
WebAPI Overview...6
Development Tools... 7
SDK Package..7
Sample Application... 7

Creating NEAs with Nymi WebAPI... 9
Bluetooth Notifications.. 12
Presence Operation.. 12

Presence Notifications.. 13
Subscribe_endpoint Operation..14
Intent Notification.. 15
Lookup Operation... 16

Troubleshooting..19
Enable debug mode... 19

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 ii

Preface

Preface
Nymi™ provides periodic revisions to the Nymi Connected Worker Platform. Therefore, some
functionality that is described in this document might not apply to all currently supported Nymi
products. The product release notes provide the most up to date information.

Purpose

This document is part of the Connected Worker Platform (CWP) documentation suite.

This document provides information about how to understand and develop Nymi-enabled
Applications (NEA) by utilizing the functionality of the Nymi SDK, over a WebSocket
connection that is managed by a web-based or other application. Separate guides are
provided for Windows and iOS application development.

Audience

This guide provides information to Developers.

Revision history

The following table outlines the revision history for this document.

Table 1: Revision history

Version Date Revision history

1.0 April 28, 2023 First release of this document for
the CWP 1.7.0 release.

Related documentation

• Nymi Connected Worker Platform—Overview Guide

This document provides overview information about the Connected Worker Platform (CWP)
solution, such as component overview, deployment options, and supporting documentation
information.

• Nymi Connected Worker Platform—Deployment Guide

This document provides the steps that are required to deploy the Connected Worker
Platform solution.

Separate guides are provided for authentication on iOS and Windows device.
• Nymi Connected Worker Platform—Administration Guide

This document provides information about how to use the NES Administrator Console to
manage the Connected Worker Platform (CWP) system. This document describes how to

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 3

Preface

set up, use and manage the Nymi Band™, and how to use the Nymi Band Application. This
document also provides instructions on deploying the Nymi Band Application and Nymi
Runtime components.

• Nymi SDK for C Developer's Guide

This document provides information about how to develop Nymi-enabled Applications by
using the Nymi API(NAPI).

• Connected Worker Platform with Evidian Installation and Configuration Guide

The Nymi Connected Worker Platform with Evidian Guides provides information about
installing the Evidian components and configuration options based on your deployment.
Separate guides are provided for Wearable, RFID-only, and mixed Wearable and RFID-
only deployments.

• Nymi Connected Worker Platform—Troubleshooting Guide

This document provides information about how to troubleshoot issues and the error
messages that you might experience with the NES Administrator Console, the Nymi
Enterprise Server deployment, the Nymi Band, and the Nymi Band Application.

• Nymi Connected Worker Platform with Evidian Troubleshooting Guide

This document provides overview information about how to troubleshoot issues that you
might experience when using the Nymi solution with Evidian.

• Nymi Connected Worker Platform—FIDO2 Deployment Guide

The Nymi Connected Worker Platform—FIDO2 Deployment Guide provides information
about how to configure Connected Worker Platform and FIDO2 components to allow
authenticated users to use the Nymi Band to perform authentication operations.

• Connected Worker Platform with POMSnet Installation and Configuration Guide

The Nymi Connected Worker Platform—POMSnet Installation and Configuration Guides
provides information about how to configure the Connected Worker Platform and POMSnet
components to allow authenticated users to use the Nymi Band to perform authentication
operations in POMSnet.

• Nymi Band Regulatory Guide

This guide provides regulatory information for the Generation 3 (GEN3) Nymi Band.
• Third-party Licenses

The Nymi Connected Worker Platform—Third Party Licenses Document contains
information about open source applications that are used in Nymi product offerings.

• Connected Worker Platform Release Notes

This document provides supplemental information about the Connected Worker Platform,
including new features, limitations, and known issues with the Connected Worker Platform
components.

How to get product help

If the Nymi software or hardware does not function as described in this document, you can
submit a support ticket to Nymi, or email support@nymi.com

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 4

https://support.nymi.com/hc/en-us/requests/new
support@nymi.com

Preface

How to provide documentation feedback

Feedback helps Nymi to improve the accuracy, organization, and overall quality of the
documentation suite. You can submit feedback by using support@nymi.com

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 5

support@nymi.com

Nymi SDK Overview

Nymi SDK Overview
The Nymi SDK provides Developers with libraries, APIs, sample code and documentation to
build a Nymi-enabled Application (NEA).

Nymi SDK delivers the Nymi API(NAPI) through a Windows Dynamically Linkable Library(DLL)
named nymi_api.dll that developers include in a Windows application that supports a locally
linked library.

WebAPI Overview
Nymi WebAPI is an RFC-6455 compliant WebSocket. NEAs, such as web-based application
use a standard WebSocket client to access Nymi WebAPI.

The Nymi WebAPI allows developers to utilize the websocket functionality of the Nymi SDK in
a web-based or native application. The Nymi WebAPI architecture is part of the Nymi SDK.

Note: The WebAPI is supported on Microsoft Windows and iOS platforms only.

Nymi WebAPI provides bi-directional communication using requests/responses over a
persistent connection. All messages sent and received are encoded in JSON format. The
architecture provides continuous communication using WebSocket connections between the
Nymi Agent and Nymi-enabled Application (NEA) running either as a native application or
inside of a web client.

The WebAPI communicates with Nymi Bands over a WebSocket client and supports multiple
NFC readers .

To enable NFC support, on the user terminal you must:

• Connect the NFC reader
• Install a compatible version of the Nymi Bluetooth Endpoint

To secure communication between Nymi Agent and WebAPI client applications, Nymi highly
recommends that you enable TLS for the WebAPI interface.

When a user performs a Nymi Band tap, to complete an authentication or e-signature in
WebAPI application, the Nymi Bluetooth Endpoint sends an intent event that represents the tap
to the application through the interface of the Nymi Agent.

Configuration parameters are set in a TOML file, as described later in this document.

WebSocket Keepalive Message

Nymi implements keepalive messages according to the RFC-6455 WebSocket Protocol
standard for bi-directional communication. Nymi sends a ping message every 30 seconds to

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 6

Nymi SDK Overview

the NEA and expects to receive a pong message response. The keepalive message indicates
that the connection is still responsive.

Nymi-supported web browsers send a pong message in response to the ping control frame
message. The pong control frame message ensures that the session is connected to the Nymi
Bluetooth Endpoint. NEA supported web browsers do not require any additional configuration to
support this functionality.

If you are using a native WebSocket client, additional implementation may be required.

Note: The WebSocket client, which is the NEA, disconnects from the Nymi Agent if there are
no messages (including pings and pongs) sent or received for a period of 60 seconds.

Development Tools
To develop NEAs on a Windows platform, you can use one of the following tools.

• Any Microsoft-supported version of Visual Studio.
• Visual Studio Code (or any other code editor).
• Any language that interfaces with a DLL, for example, Python

For C, C++, and C#, Nymi recommends that you use Visual Studio 2017.

SDK Package
The SDK package contains the following folders:

• ..\nymi-sdk\windows\i686—Contains the NAPI dll file for i686 user terminals.
• ..\nymi-sdk\windows\sampleApps—Contains sample Nymi-enabled Applications(NEAs).
• ..\nymi-sdk\windows\x86_64—Contains the NAPI dll file for i686 user terminals.
• ..\nymi-sdk\windows\setup\BleDriver_x64.msi—64-bit Bluegiga driver installation file.
• ..\nymi-sdk\windows\setup\BleDriver_x86.msi —32-bit Bluegiga driver installation file.
• ..\nymi-sdk\windows\setup\NymiRuntime-5.9.1.8.msi—Nymi Runtime MSI installation file.
• ..\nymi-sdk\windows\setup\Nymi Runtime installer.version.exe —Nymi Runtime installation

file.

Sample Application
The Nymi SDK package includes a sample application that demonstrates some of the key
functionality of the Nymi solution.

The sample applications is a simple Javascript application that demonstrates all the basic
functions that are supported by the API and allows a user to see both JSON request and
response examples to help understand how the API works.

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 7

Nymi SDK Overview

Sample Application for Nymi WebAPI

The sample application for Nymi WebAPI is located in the ..\nymi-sdk\windows\javascript
\webapiSample folder. The application prompts you for the configuration parameters that are
unique to your environment.

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 8

Creating NEAs with Nymi WebAPI

Creating NEAs with Nymi WebAPI
Customer and partner developers can use the Nymi WebAPI to develop Nymi-enabled
Application (NEAs) in programming languages, such as Java or C#. The API is based on
JSON messages that are exchanged with the server over a websocket connection. This
chapter provides information about the supported operations.

To deploy an NEA, developers must install the Nymi Runtime on each terminal where the NEA
runs. The Nymi Runtime includes the following components: Nymi Bluetooth Endpoint, and Nymi
Agent.

Note: In this document, the use of device refers to the Nymi Band.

The Nymi Band provides authentication information about a user to applications. An
application can use this information on a point-in-time basis (for simple authentication) or
continuously (for both authentication and de-authentication).

Additionally, the Nymi Band can authenticate by using NFC-only (which is significantly less
secure) and NFC with Bluetooth (which is exceptionally secure). The following figures provide
example workflows for both authentication use cases.

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 9

Creating NEAs with Nymi WebAPI

Figure 1: NFC-only communications

Figure 2: NFC with Bluetooth communications

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 10

Creating NEAs with Nymi WebAPI

In both authentication examples, the first step is to wait for an intent notification. The intent
operation tells the application that a user has placed their Nymi Band on an NFC reader that
is connected to the workstation. The intent operation returns a device ID, which is the standard
identifier of a Nymi Band in the CWP solution.

In the NFC-only example, the application requests a lookup operation, which returns the
username and domain of the user that is associated with the Nymi Band. In applications that
use the NFC-only model as a secure replacement for badges, the authentication is complete.

In the fully secure NFC with Bluetooth mode, after the intent notification returns a device
ID, the application ensures that the device is present. This action is performed in one of the
following ways:

• Passively as NAPI continuously sends notifications about present Nymi Bands.
• Actively by requesting a presence operation with the desired device ID, and then waiting for

a response.

For passive notifications, since NAPI sends notifications for the full list of Nymi Band present
at start-up, an application can track all present bands and then check its list of current Nymi
Bands. After presence is established, the application can request an assert_identity operation
for the Nymi Band. The assert_identity operation uses a bi-directional challenge-response to
establish a secure channel between the Nymi Agent and the requested Nymi Band. When
the action results in the establishment of the secure channel, the assert_identity verifies
the authentication state of the Nymi Band. When the assert_identity operation completes
successfully the operation passes the username and domain of the associated user back to
the application, and the application can continue with an absolute assurance that the Nymi
Band is present and authenticated to the correct user.

Note: The Nymi Band exchanges data over Bluetooth Low Energy(BLE) and the exchange
consists of several cryptographic operations. As a result, the assert_identity operation can take
up to two seconds to complete.

Continuous monitoring of the WebSocket to watch for presence notifications indicates to an
application when a user has authenticated, de-authenticated (by removing their Nymi Band),
or when the user leaves a physical area. The presence notifications always returns one of the
following statuses for a single Nymi Band.

• Weak—The Nymi Band is present. A strong presence is represented by the successful
return of an assert_identity operation).

• Absent—The Nymi Band is not present.
• Unauthenticated—The Nymi Band is not authenticated.

Note: The loss of presence triggers an application to log out, lock, or remove user access to
functionality.

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 11

Creating NEAs with Nymi WebAPI

Bluetooth Notifications
Nymi Bluetooth Endpoint is a client service that communicates with the Bluetooth Adapter.
Bluetooth notifications for Bluetooth Adapter status are non-transactional.

The Bluetooth Adapter communicates to the Nymi Band. Each time that a Bluetooth Adapter
becomes available, the update function retrieves a notification in the following format.

 {
 "operation": "ble_ready",
 "exchange": null,
 "status": 0,
 "payload": {},
 "error ": {}
 }

If a Bluetooth Adapter becomes unavailable, the update function retrieves an error notification
in the following format.

 {
 "operation": "error",
 "exchange": null,
 "payload": {},
 "status": "error_code",
 "error": {
 "error_description":"error_description>",
 "error_specifics":"error_specifics"
 }
 }

where error_code is one of the following values: 5000, 5010, 5100.

For more information about error codes, see Error Handling.

Presence Operation
Using the presence request, you can retrieve the current state of the Nymi Band. Presence
requests are non transactional. The presence request has no response and a presence
response is not tied to a specific request.

When a presence request is sent, the system will replay the last presence update received.
When a presence state changes you will receive automatic notifications. For information about
these notifications, see Presence notifications.

Presence is relative to an endpoint (the response indicates if the Nymi Band is in range of the
NEA). A Nymi Band can be present on some endpoints, but absent on others. If the presence
state is false the presence state returns as absent.

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 12

Creating NEAs with Nymi WebAPI

JSON Object Format

Define the presence request JSON object in the following format.

 {
 "operation": "presence",
 "exchange":"exchange_value",
 payload":{
 "device": "NymiBandID",
 "proximity" : "proximity value",
 "service_request_state" : "service request state",
 "state" : "state"
 },
 }

where:

• NymiBandID: Is the Nymi Band MAC address.
• proximity_value: Is determined by the distance between the Nymi Band and the BLE

adapter. The proximity_value will change when the Nymi Band moves closer or farther from
the BLE adapter.

• state: Is determined by the state of the Nymi Band; weak, absent, or unauthenticated. The
following table describes the state values in more detail:

Table 2: State values for presence

State Value Definition

Absent The Nymi Agent cannot communicate with the Nymi Band.
This state also applies when a user wears an unenrolled Nymi
Band.

Reasons for Nymi Band absence include:

• Nymi Band has been removed from the body.
• Nymi Band has not communicated with the Nymi Agent for

at least 30 seconds.
• Nymi Band has not been within the range of the BLE

Adapter for at least 30 seconds.

Unauthenticated Nymi Band is enrolled and but not authenticated.

Weak Nymi Band is in an authenticated state.

• service request state: Is a flag that accompanies each presence notification and determines
if there is a message in the Nymi Band that is ready to be downloaded. If the value of
service_request_state is not zero, the Nymi Band has service level messages. If the
value is '0', there are no messages

Presence Notifications

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 13

Creating NEAs with Nymi WebAPI

When Nymi WebAPI detects a change in Nymi Band presence, Nymi WebAPI generates a
presence notification.

After the Nymi-enabled Application establishes the websocket session, the system sends an
updated notification each time any of presence parameters change.

It is recommended that you develop a method for your application that tracks when the Nymi
Bands come in and out of range.

Presence notifications appear in the same format as the presence operation.

Subscribe_endpoint Operation
The subscribe_endpoint operation allows an NEA to change the Nymi Bluetooth Endpoint
to which it is subscribed.

subscribe_endpoint request operations appear in the following format:

 {
 "operation": "subscribe_endpoint",
 "exchange":"exchange_value",
 "payload": {
 "endpoint_id": "ip_address"
 }
 }

where:

• operation is subscribe_endpoint.
• exchange is any value and is used to match the response to the request.
• endpoint_id is based on the endpoint IP address. Required when the configuration uses a

centralized Nymi Agent.
• endpoint_id is a unique identifier that an NEA assigns to every iOS device. The NEA

passes the same value to the Nymi Application, when the NEA invokes the Nymi
Application.

The subscribe_endpoint operation returns a status code only, no errors are returned.

 {
 “operation”: “subscribe_endpoint”,
 "exchange":"exchange_value",
 “payload”: {}
 “status”: 0,
 “error”: {}
 }

You can only subscribe an NEA to one endpoint at any given time. When you request the
subscribe_endpoint operation, the NEA is automatically unsubscribed from the previously

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 14

Creating NEAs with Nymi WebAPI

subscribed endpoint. Any Nymi Bands that were present on the previously subscribed
endpoint, become absent, and the NEA receives corresponding presence update notifications.
The NEA will then receive a Bluetooth status notification. If the requested Nymi Bluetooth
Endpoint has connected successfully and is in a ready state, the NEA will receive a ble_ready
notification, followed by presence update notifications for any present bands on that endpoint.
Otherwise, the NEA will receive an error message. See Bluetooth Notifications for more
information about possible error messages.

Note: The NEA remains subscribed to the requested endpoint_id even if it is not able to
connect to that Nymi Bluetooth Endpoint. If the Nymi Bluetooth Endpoint becomes ready
at a later time (for example, when a user turns on the user terminal), then NEA receives a
ble_ready message at that time.

Intent Notification
An intent occurs when a user taps their authenticated Nymi Band next to an NFC reader or
Bluetooth radio antenna, and is used to signal an intent to take an action. For example, an
intent to provide an e-signature is generated when a user taps their authorized Nymi Band
against an NFC reader.

To ensure that intent notifications are received, specify the NES server in the nymi_agent.toml
.

Intent notifications appear in the following format:

 {
 "operation": "intent",
 "exchange": null,
 "payload": {
 "device": "NymiBandID",
 "type": "see below",
 },
 "status": 0,
 "error": {}
 }

where device is the Nymi Band MAC address.

type is used to identify the manner in which the action was initiated.

Table 3: Intent Payload Types

Type Field Description

ble A user tapped an authenticated Nymi Band
against a BLE device or is in close proximity to a
BLE radio antenna, such as a BLE adapter.

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 15

Creating NEAs with Nymi WebAPI

Type Field Description

nfc A user tapped an authenticated Nymi Band
against an NFC reader or is in close proximity to
read range of the NFC reader.

Status Codes

A 2201 status code is reported when the NFC reader is unsuccessful at mapping the NFC ID
to the enrolled Nymi Band.

A 2200 status code is reported when a NES communication error (for example, NES is offline)
occurs.

Note: The 2201 and 2200 status codes do not contain a NymiBandID in the payload.

Lookup Operation
Use the lookup operation to determine the following values:

• Device ID (MAC address) of the Nymi Band.

Note: An intent notification includes the device ID or you can retrieve the device ID of a
Nymi Band from NES by using the lookup operation.

• NfcUID of the Nymi Band.
• Domain and name of the user.
• User status in Active Directory (AD). The AD status for a user appears in the response

when user status check is enabled in NES. The following table summarizes the possible
user statuses.

Table 4: AD user statuses

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Active | Locked User account is locked. This status can appear
with Active and Password Expired.

Active | PasswordExpired User account has an expired password. This
status can appear with Active and Locked.

By default, NES is not configured to perform user status checks in AD. Contact the NES
Administrator to enable AD user status checking, and optionally the checking interval in the
NES Administrator Console.

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 16

Creating NEAs with Nymi WebAPI

JSON Object Format

Define the payload JSON object for the lookup command in the following format.

 {
 "operation": "lookup",
 "exchange": "exchange_value",
 "payload": {
 "nes_url": "https_url_to_nes",
 "query": "query_JSON",
 "lookup_keys": "key_JSON"
 }
 }

where:

• nes_url the NES URL.
• query field is a JSON object that defines the values that are passed during the request

to retrieve the response. Acceptable values include NfcUID, Domain and Username, and
NymiBandID.

Note: The property names Domain and Username are case-sensitive.
• lookup_keys field is a JSON array that contains a list of values that you want to appear in

the response. Supported values include NfcUID, Domain and Username, NymiBandID, and
UserStatus.

Example 1

The following code block provides an example of a JSON object that instructs
Nymi WebAPI to provide the NfcUID of a device and the user status for a user
named JSmith in the MyCorpDomain domain.

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "Domain":"MyCorpDomain",
 "Username": "JSmith"
 }
 "lookup_keys": ["NfcUID", "UserStatus"]
 }
 }

Result 1

A successful lookup operation produces a response with the following properties.

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 17

Creating NEAs with Nymi WebAPI

In this example, the check user status in AD option is enabled in NES, as a result, the
response includes the UserStatus property.

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values":{"NfcUID": "1234xyz", "UserStatus":"Active|PasswordExpired"},
 },
 "status": "0",
 "error: {}
 }

Example 2

The following code block provides an example of a JSON object that instructs
Nymi WebAPI to provide the NfcUID of a device with Nymi Band (or device) ID
"C2:FA:D7:F0:D7:96".

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "NymiBandID": "C2:FA:D7:F0:D7:96"
 }
 "lookup_keys": ["NfcUID"]
 }
 }

Result 2

A successful lookup operation produces a response with the following properties.

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values": {"NfcUID": "1234xyz"},
 },
 "status": "0",
 "error: {}
 }

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 18

Troubleshooting

Troubleshooting
Nymi API writes information to log files that allow you to monitor and troubleshoot the NEA.

For additional assistance, visit the Support page on the Nymi website, or contact your Nymi
Solution Consultant.

The following table summarizes the log files that are available for troubleshooting.

Table 5: Log file locations

Component Log location Files

Nymi API By default, the current working
directory.

nymi_api.log

Nymi Agent C:\Nymi\NymiAgent nymi_agent.log

Nymi Bluetooth Endpoint C:\Nymi\Bluetooth_Endpoint
\logs

nymi_bluetooth_endpoint.log

Enable debug mode
When testing Nymi WebAPI and builds, set the NYMI_DEBUG environment variable to any
value to enable debug logging, and the restart the Nymi Agent and Nymi Bluetooth Endpoint
services.

Copyright ©2023 Nymi Connected Worker Platform Nymi
SDK for WebAPI on Windows Developer's Guide v1.0 19

https://support.nymi.com/hc/en-us/requests/new

Copyright ©2023
Nymi Inc. All rights reserved.

Nymi Inc. (Nymi) believes the information in this document is accurate as of its
publication date. The information is subject to change without notice.

The information in this document is provided as-is and Nymi makes no representations or
warranties of any kind. This document does not provide you with any legal rights to any
intellectual property in any Nymi product. You may copy and use this document for your
referential purposes.

This software or hardware is developed for general use in a variety of industries and
Nymi assumes no liability as a result of their use or application. Nymi, Nymi Band, and
other trademarks are the property of Nymi Inc. Other trademarks may be the property of
their respective owners.

Published in Canada.
Nymi Inc.
Toronto, Ontario
www.nymi.com

http://www.nymi.com

	Contents
	Preface
	Nymi SDK Overview
	WebAPI Overview
	Development Tools
	SDK Package
	Sample Application

	Creating NEAs with Nymi WebAPI
	Bluetooth Notifications
	Presence Operation
	Presence Notifications

	Subscribe_endpoint Operation
	Intent Notification
	Lookup Operation

	Troubleshooting
	Enable debug mode

