
Nymi API for Linux Guide
Nymi Connected Worker Platform

3.0
2021-05-03

Contents

Preface.. 4

Nymi API for Linux Overview.. 6
Nymi API for Linux Architecture... 6
Development Tools.. 7
Supported Platforms...7
Supported NFC Reader..7
Nymi API for Linux Sample Application... 7

Nymi API for Linux Installation...8
Installing the Nymi API for Linux..8

Importing TLS Certificates Obtained from the NES Server.. 9
Copying and Extracting the TLS Certificate..9

Configuring NFC readers...10

Nymi Component Configuration... 11

Uninstalling Nymi Linux Runtime.. 12

Creating NEAs with Nymi API... 13
Call Concurrency... 13
Request and Response... 13

Request Operations...15
subscribe operation...17
init operation.. 18
lookup... 22
assert_identity...24
presence update.. 26

Response Messages and Notifications... 28
update function...29

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 ii

assert_identity response..30
initialization error notifications..31
presence notifications...31
Bluetooth notifications... 34
Intent Notification.. 34
Editing the nbe.toml File... 35

Error Handling..38
Status Code...38

Troubleshooting... 41
Enable debugging...41
Service information and runtime errors...41
Checking the service status... 42
Starting services commands...42

Appendix...43
Authentication requirements.. 43

Acquire an Authentication Token...43

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 iii

Preface

Preface

Nymi™ provides periodic revisions to the Nymi Connected Worker Platform. Therefore, some
functionality that is described in this document might not apply to all currently supported Nymi
products. The product release notes provide the most up to date information.

Purpose

This document is part of the Connected Worker Platform (CWP) documentation suite.

This document provides information about how to use the functionality that is available in the NAPI
that is part of the Connected Worker Platform.

Audience

This guide provides information to Developers.

Revision history

The following table outlines the revision history for this document.

Table 1: Revision history

Version Date Revision history

03 May 3, 2021 Update to reflect Nymi Enterprise
Edition rebrand to Connected
Worker Platform.

02 April 15, 2020 This guide is reissued due to
document version update. There are
no content changes since NEE 2.6.0.

01 September 18, 2020 Reissued to clarify behaviour
for the presence operation,
presence notification and bluetooth
notifications.

Related documentation

• Nymi Connected Worker Platform NES Deployment Guide

This document provides an overview of the components and the steps that are required to deploy
the Nymi Enterprise Server (NES). This installation uses the Nymi Token Service to
install certificates that enable communication between components. This document also provides
information about deploying the Connected Worker Platform in a Citrix or RDP environment.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 4

Preface

• Nymi Connected Worker Platform Administration Guide

This document provides information about how to use the NES Administrator Console to
manage the Connected Worker Platform (CWP) system. This document describes how to
set up, use and manage the Nymi Band™, and how to use the Nymi Band Application. This
document also provides instructions on deploying the Nymi Band Application and Nymi Runtime
components.

• Connected Worker Platform Release Notes

This document provides supplemental information about the Connected Worker Platform, including
new features, limitations, and known issues with the Connected Worker Platform components.

• Nymi Connected Worker Platform Troubleshooting Guide

This document provides information about how to troubleshoot issues and the error messages that
you might experience with the NES Administrator Console, the Nymi Enterprise Server
deployment, the Nymi Band, and the Nymi Band Application.

How to get product help

If the Nymi software or hardware does not function as described in this document, contact your
administrator for immediate support. Alternatively, you can submit a support ticket to Nymi, or email
support@nymi.com

How to provide documentation feedback

Feedback helps Nymi to improve the accuracy, organization, and overall quality of the documentation
suite. You can submit feedback by using support@nymi.com

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 5

https://support.nymi.com/hc/en-us/requests/new
support@nymi.com
support@nymi.com

Nymi API for Linux Overview

Nymi API for Linux Overview

The Nymi SDK provides developers with libraries, APIs, sample code and documentation for building
a Nymi-enabled Application (NEA). The Nymi API for Linux architecture is part of the Nymi
SDK.

This guide provides information about how to develop a Nymi-enabled Application using the Nymi
API for Linux.

The Nymi SDK contains components that enable you to build Nymi-enabled Application (NEA):

• Nymi Runtime:provides developers with tools that enable them to create a Nymi-enabled
Application. The Nymi SDK and Runtime handle the primary functions of the Nymi Band
communication. The Nymi SDK consists of components that handle the business logic necessary in
delivering functionality.

• Nymi Agent: provides BLE management, manages operations and message routing. Facilitates
communication between NEAs and the Nymi Band, and maintains knowledge of the Nymi Band
presence and authenticated states.

• Nymi Bluetooth Endpoint Daemon (NBEd): host-side software that interfaces between
the Bluegiga Dongle (BLE) and the Nymi Agent.

• Nymi Agent Daemon (NymiAgentd): provides BLE management, manages operations and
message routing.

• Nymi API: provides NEAs access to Nymi Band functionality using a dynamic link library. It
also manages NEA certificates and allows secure communication with Nymi Bands using the Nymi
Security Protocol. The Nymi API handle business logic through the operations, which send and
receive request and response messages. Nymi APIenable developers to create a Nymi-enabled
Application. They connect the web, allowing developers, applications, and sites to tap into databases
and services (or, assets)—much like open-source software. Nymi API does this by acting like a
universal converter plug offering a standard set of instructions.

Nymi API for Linux Architecture

Nymi API supports enterprise integration and deployment of features that are available in the
Connected Worker Platform.

Nymi has created APIs (referred to as NAPI) that supports the enterprise integration and development of
features that are available in the Connected Worker Platform.

APIs enable developers to create Nymi-enabled Applications - They connect the web, allowing
developers, applications, and sites to tap into databases and services (or, assets)—much like open-source
software. APIs do this by acting like a universal converter offering a standard set of instructions.

For information about deploying in a Citrix or RDP environment, see the Nymi Connected Worker
Platform NES Deployment Guide.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 6

Nymi API for Linux Overview

Development Tools
To develop NEAs on Linux platforms, you can use the following tools.

• Python 3
• any software language that supports C library, is supported for API development

Supported Platforms
Nymi API for Linux supports the following platforms.

• Linux CentOS 7, 64-bit

Supported NFC Reader

The Nymi API for Linux supports multiple NFC readers. A list of supported NFC readers is
found in the Hardware requirements section of the Nymi Connected Worker Platform Administration
Guide

The Nymi Bluetooth Endpoint monitors all attached and supported NFC readers and forwards
events from all NFC readers (there is no preference between readers).

The NFC reader is connected to the user's terminal where the Nymi Bluetooth Endpoint is
installed and are automatically detected by the Nymi Bluetooth Endpoint.

Nymi API for Linux Sample Application
Nymi offers you a sample application that demonstrates some of the functionality of the Nymi API
for Linux. The sample application is written in Python language.

The sample application is located within the package at: nymi-sdk/linux/examples/python.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 7

Nymi API for Linux Installation

Nymi API for Linux Installation

The Nymi API for Linux development package contains the following components.

• libnymi_api.so : a library that exposes the Nymi functionality for both developers an Nymi-enabled
Application

• nymiagentd-x.x.x-x.x86_64.rpm : Nymi Agent Daemon file
• nbed-x.x.x-x.x86_64.rpm : Nymi Bluetooth Endpoint Daemon file
• sample application and readme file

The RPM installation package is included in the Nymi release package. The following service are
included in the installation package accessing the interface or BLE dongle.

• Nymi Bluetooth Endpoint Daemon (NBEd) accesses the serial port. Establishes and
secures the Bluetooth connection to the Nymi Band.

• Nymi Agent Daemon (NymiAgentd) delegates requests and responses between the NEA and
the Nymi Band.

Installing the Nymi API for Linux
The Linux runtime services, which include the Nymi Bluetooth Endpoint Daemon (NBEd)
and Nymi Agent Daemon (NymiAgentd) are included in installation packages.

Nymi recommends that you install the Nymi API for Linux using the Linux YUM package
manager commands. Using rpm may cause upgrade or uninstall issues.

Note: The Nymi API for Linux supports CentOS 7 only.

Note: You must have super user privileges (sudo) to install the files.

1. Obtain and download the Nymi Software package from your Nymi Solution Consultant.

2. In a terminal, within the software package, navigate to the following path: nymi-sdk-5.4.0-xx/nymi-
sdk/linux/RPMS/x86_64

3. Extract the following rpm files:

• nbed-x.x.x-x.x86_64.rpm
• nymiagentd-x.x.x-x.x86_64.rpm

where

x.x.x-x represents the file version

4. Navigate to the location where you downloaded the nbed rpm file, and run the following command:

$ sudo yum install ./<nbed-x.x.x-x.x86_64.rpm>

where

nbed-x.x.x-x.x86_64.rpm represents the file name.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 8

Nymi API for Linux Installation

5. Navigate to the location where you downloaded the nymiagentd rpm file, and run the following
command:

$ sudo yum install ./<nymiagentd-x.x.x-x.x86_64.rpm>

where

nymiagentd-x.x.x-x.x86_64.rpm represents the file name.

Importing TLS Certificates Obtained from the NES Server
Nymi API for Linux supports TLS self-signed root CA certificates.

If your Nymi environment is already using self-signed root CA certificates (TLS server certificates)
ensure that they are installed in the Trusted Root Certificate Store on the client, no further action is
required.

If the TLS server certificate is missing from the trusted root certificate store, you can copy and extract
the TLS server certificate that was issued by a Trusted Certificate Authority (CA). If TLS signing
certificate is not signed by a trusted CA, the signing certificate need to be imported into Trusted Root
Certificate.

Note: The following procedure assumes that the TLS server certificate and the associated private key
are packaged in the same file. Depending on how the private key for your certificate is generated, your
procedure might differ.

Copying and Extracting the TLS Certificate
Importing TLS server certificates into the Trusted Root Certificate Store.

1. Open a shell prompt in CentOS Linux.

2. Copy the certificates from their current location to the following location: /etc/pki/ca-trust/source/
anchors

The following step assumes that the TLS server certificate and the associated private key are packaged in the
same file.

3. Run the following command: sudo update-ca-trust extract.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 9

Configuring NFC readers

Configuring NFC readers

PCSC-lite is a cross-platform API for accessing smart card readers. It is a dependency for using NFC
readers with the Nymi API for Linux.

1. Open a terminal and download and install pcsc-lite using the following command:

sudo yum install pcsc-lite

2. Enable pcsc-lite using the following command:

sudo systemctl enable pcscd

3. Start pcsc-lite using the following command:

sudo systemctl start pcscd

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 10

Nymi Component Configuration

Nymi Component Configuration

In order to create an environment that can utilize the services contained in the Nymi API for
Linux, specify the location of the Nymi Agent so that the Nymi Bluetooth Endpoint can
connect to it.

The Nymi API for Linux is installed on each RDP client. TheNymi API for Linux service
on each RDP client communicates with the Nymi Agent service, which is installed on a separate host,
on websocket port 9120.

1. Navigate to the location where the nbe file is installed.

2. Open the /usr/sbin/nbe.toml file.

3. Update the location of the Nymi Agent

• agent_url = 'ws://<FQDN>:9120/socket/websocket'

4. Optionally, you can set the location of the Nymi Bluetooth Endpoint by configuring the
endpoint_id parameter.

• endpoint_id = "<unique ID>"

By configuring the endpoint_id parameter, you need to use the subscribe operation. For more information
about the subscribe operation, see the Request Operation section in this guide.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 11

Uninstalling Nymi Linux Runtime

Uninstalling Nymi Linux Runtime

When uninstalling the Nymi API for Linux, the Nymi Agent and Nymi Bluetooth Endpoint
services must be uninstalled on an individual basis.

To uninstall the Nymi Agent, open a terminal and run the following command:

$ sudo yum remove nymiagentd

To uninstall the Nymi Bluetooth Endpoint, open a terminal and run the following command:

$ sudo yum remove nbed

Note: After uninstalling the services, the configuration file and log files for Nymi Bluetooth Endpoint
service remains available. The Nymi Agent log files are deleted.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 12

Creating NEAs with Nymi API

Creating NEAs with Nymi API

This section provides information about NEAs and the supported functions and operations that
developers can use to create NEAs in programming languages, such as Linux.

Note: In this document, the use of device refers to the Nymi Band.

Call Concurrency
NAPI has two FIFO (First-In, First-Out) message queues.

• Device queues—One message queue exists for each Nymi Band. When NAPI receives a device-
related message, NAPI dispatches the message to the appropriate device message queue, in the order
that the message is received. NAPI might dispatch messages to a device before dispatching messages
that have been queued longer, to another device.

• Non-device queue—One global message queue that stores messages that are not related to a device
operation, for example, the response for an init() call. NAPI dispatches non-device related messages
to the queue in the order that the messages are received.

Request and Response
The request() and update() calls are handled differently in memory.

• request()—NEA supplies the request message in a memory buffer. Before the call returns, NAPI
creates a copy of the message.

• update()—After the function returns, NAPI expects the NEA to copy the response message out of the
memory address provided by the update() call, before calling the update() function again.

Request Message Format

Every request message is a JSON object with the following key-value pairs:

 {
 operation: <"operation name">,
 [exchange: <"user defined">],
 payload: {
 operation specific request fields
 }
 }

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 13

Creating NEAs with Nymi API

Response Message Format

Response messages have the same format as request message plus an extra fields related to the status of
the request:

 {
 operation: <"same as request">
 exchange: <"same as request" or null>
 status: <integer >= 0>,
 payload {
 operation specific response fields
 }
 error: {
 error_description: <"general error description">,
 error_specifics: <"">
 }
 }

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 14

Request Operations

Request Operations

When a request is made to NAPI it is wrapped in this JSON object. The response from NAPI is
wrapped in the same object with some additional attributes defined.

A request() call submits a message to Nymi API. Nymi API performs the operation that is contained
in the message. The result of the operation is a response message. Use the update function to retrieve the
response message.

The declaration for the request operation is as follows:

int request(const char* request_obj)

where:

• request_obj is a JSON string that requests Nymi API to perform an operation. A request_obj
contains one or more properties. Each property has a name and a value.

Note: A request_obj must contain one operation property.
• request returns one of the following values:

• 0 when Nymi API accepts the request_obj for processing
• 1 when Nymi API is not initialized and this request is not an init request. The NEA must run the

init call before Nymi API can accept any messages other than init.

Note: The NEA must already be initialized.

The following diagram shows the request() call and message handling workflow for device operations.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 15

Request Operations

Figure 1: Request function workflow

1. Create the request in a memory buffer and pass the request to NAPI
2. Nymi API creates a copy of the request message.
3. Nymi API initiates the requested operation.

The request() call returns 0 when Nymi API accepts the message and returns a 1 when NEA the
has not been initialized. The NEA must run the init operation before Nymi API can accept any
messages other than init.

The request message is a null-terminated string containing a JSON object with the following key-value
pairs:

 {
 "operation": "operation_name",
 "exchange": "exchange_string",
 "payload": {
 "property_name": "property_value",
 "property_name1": "property_value1"
 …
 "property_nameX": "property_valueX"
 }
 }

where:

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 16

Request Operations

• operation_name defines the operation for NAPI to perform. For example, init, assert_identity,
presence and lookup.

subscribe operation
The subscribe_endpoint operation allows a Nymi-enabled Application (NEA) to change the
Nymi Bluetooth Endpoint to which it is subscribed..

The subscribe_endpoint operation allows an NEA to change the Nymi Bluetooth Endpoint to
which it is subscribed.

By default, each NEA is matched to it's local endpoint based on the IP address of the workstation. In
most deployments, the NEA and endpoint are correctly matched by default, and connect automatically.

subscribe_endpoint request operations appear in the following format:

In central deployments, certain network configurations, such as workstations that have multiple
network interfaces, may interfere with the automatic matching of the NEA and Nymi Bluetooth
Endpoint. In these cases, the subscribe operation must be used by the NEA to communication to
which workstation it wants to connect.

 {
 "operation": "subscribe_endpoint",
 "exchange":"exchange_value",
 "payload": {
 "endpoint_id": "bar"
 }
 }

where:

• operation is the subscribe_endpoint.
• exchange is any value and is used to match the response to the request.

payload:

• endpoint_id is based on the endpoint IP address.

The subscribe_endpoint operation returns status codes only, no errors are returned. The following table
displays possible status codes:

 {
 “Operation”: “subscribe_endpoint”,
 "exchange":"exchange_value",
 “payload”: {}
 “status”: 0,
 “error”: {}
 }

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 17

Request Operations

An NEA can only be subscribed to one endpoint at any given time. When a subscribe operation is
requested, the NEA is automatically unsubscribed from the endpoint it was previously subscribed to.
If any Nymi Bands were present on that endpoint, they will become absent, and the NEA will receive
corresponding presence update notifications. The NEA will then receive a Bluetooth status notification.
If the requested Nymi Bluetooth Endpoint has connected successfully and is in a ready state, the NEA
will receive a ble_ready notification, followed by presence update notifications for any present bands on
that endpoint. Otherwise, the NEA will receive an error message. See Bluetooth Notifications for more
information about possible error messages.

Note: The NEA will remain subscribed to the requested endpoint_id even if it is not able to connect
to that Nymi Bluetooth Endpoint. If the Nymi Bluetooth Endpoint becomes ready at a later time (for
example, that workstation is powered on), the NEA will receive a ble_ready message at that time.

init operation
The init operation initializes NAPI, configures communication channels between components, and
performs certificate enrollment when required. Ensure that init is the first operation that is requested by
the NEA. When the init operation succeeds, it is not necessary to call init again.

Initialization Options

There are three ways to call the init operation when initializing with certificate enrollment.

• nea_name
• nea_name + nes_url + token
• nea_name + nes_url + token + otp

JSON Object Format

Define the JSON payload for the init in the following format.

 {
 "operation": "init",
 "exchange": "exchange_value",
 "payload": {
 "nea_name": "name_of_application",
 "nes_url": "https_url_to_nes",
 "token": "token",
 "otp": "one_time_password",
 "log_path": "path",
 "url": "ws://agent_server:9120/socket/websocket",
 }
 }

where:

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 18

Request Operations

• name_of_application is the name that you assign to the NEA and is always required. The NES active
group policy configuration influences the name that you can specify, in the following way:

• When Manual OTP mode is enabled, you must specify the name as NEAs.
• When Manual OTP mode is not enabled, you can assign any name to the NEA.

Contact the NES Administrator to determine the active group policy configuration settings.
• nes_url field is the URL for the NES website application. You require this parameter in the first init

call. The format of the URL is https_url_to_nes
• token is an HTTP Bearer token that NES uses to authenticate the NEA user or computer. This

parameter is optional. If you will use this parameter, you must specify it in the first init call. Obtain
the token as described in the Appendix.

• one_time_password is the OTP that provides the NEA with the ability to generate the NEA
certificate. Include one_time_password in the payload when Manual OTP mode is configured in the
active group policy in NES. You require this parameter in the first init call. When you define this
parameter, you must also define the https_url_to_nes and token parameters.

• path is the log file path on the development machine. If you do not specify the path property, the
NEA uses the default log path, which is your current working directory.

• agent_server specifies the hostname of the machine that runs the Nymi Agent service.

Example

The following code block provides an example of a JSON object that instructs NAPI to
initialize the NEA that requires an OTP to retrieve a certificate.

 {
 "operation": "init",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1211",
 "payload": {
 "nea_name": "NEAs",
 "nes_url": "https://server-2.nymi.lab/nes",
 "token": "eyJVc2VyVG9rZW5TdHJpbmciOiJMbk..",
 "otp": "4C82F6CF3ABED723",
 "url": "ws://agent.nymi.com:9120/socket/websocket"
 }
 }

Results

A successful init operation produces a response with the following properties.

 {
 "operation": "init",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1211",
 "payload": {}
 "status": 0,
 "error": {}
 }

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 19

Request Operations

An unsuccessful init operation produces a non-zero status.

The following table summarizes the status codes that can appear, and the payload properties that you
require for a subsequent init call.

Table 2: Init Status Codes

Status code Payload properties for subsequent init call

0 Operation completed successfully with the defined
payload. The system is initialized. Additional calls to
init are not required.

11xx Operation completed successfully with the defined
payload. When a request other than init is sent before
the system is initialized, the system returns a status
code 1100. If the system was already initialized, but
a request for init was sent, the system returns a status
code 1110.

8000 Payload is missing the token and nes_url property
definitions. Call init again and include the token and
nes_url properties, in addition to the nea_name.

8100 Payload includes the token and nes_url but is missing
the OTP property definition. Call init again and include
the otp in the payload, in addition to the nea_name,
token and nes_url properties.

9000 There was an issue with the certificate from NES.
Contact the NES Administrator for assistance.

The following flowchart provides an overview of how you can use NAPI responses to an init call, to
determine the properties that you need to include in the payload file.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 20

Request Operations

Figure 2: NAPI response calls to init

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 21

Request Operations

lookup
An NEA requires the device ID of a Nymi Band to communicate with the Nymi Band. You can retrieve
the device ID of a Nymi Band from NES by using the lookup operation.

Use the lookup operation to determine the following values:

• Device ID

Note: Device operations require that you specify the Nymi Band (or device) ID value that appears in
the response.

• NfcUID of the Nymi Band
• Domain and name of the user.
• User status in Active Directory (AD). The AD status for a user appears in the response when user

status check is enabled in NES. The following table summarizes the possible user statuses.

Table 3: AD user statuses

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Locked User account is locked. This status can appear with
Active and Password Expired.

PasswordExpired User account has an expired password. This status
can appear with Active and Locked.

By default, NES disables support for user status checks in AD. Contact the NES administrator to
enable AD user status checking, and optionally the checking interval in the NES Administrator
Console.

JSON Object Format

Define the payload JSON object for the lookup command in the following format.

 {
 "operation": "lookup",
 "exchange": "exchange_value",
 "payload":
 {
 "nes_url": "https_url_to_nes",
 "query": "query_JSON",
 "lookup_keys": "key_JSON"
 }
 }

where:

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 22

Request Operations

• nes_url field is the URL for the NES website application. You require this parameter in the first init
call. The format of the URL is https_url_to_nes

• query_JSON is a JSON object that defines the query values. Acceptable values include NfcUID,
Domain and Username, and NymiBandID.

• key_JSON is a JSON array that contains a list of values that you want to appear in the response.
Supported values include NfcUID, Domain and Username, NymiBandID, and UserStatus.

Note: The property names Domain and Username are case-sensitive.

Example 1

The following code block provides an example of a JSON object that instructs NAPI
to provide the NfcUID of a device and the user status for a user named JSmith in the
MyCorpDomain domain.

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "Domain":"MyCorpDomain",
 "Username": "JSmith"
 }
 "lookup_keys": ["NfcUID", "UserStatus"]
 }
 }

Results 1

A successful lookup operation produces a response with the following properties.

In this example, the check user status in AD option is enabled in NES, as a result, the response includes
the UserStatus property.

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values":{"NfcUID": "1234xyz", "UserStatus":"Active|PasswordExpired"},
 },
 "status": "0",
 "error: {}
 }

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 23

Request Operations

Example 2

The following code block provides an example of a JSON object that instructs
NAPI to provide the NfcUID of a device with Nymi Band (or device) ID
"C2:FA:D7:F0:D7:96".

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "NymiBandID": "C2:FA:D7:F0:D7:96"
 }
 "lookup_keys": ["NfcUID"]
 }
 }

Results 2

A successful lookup operation produces a response with the following properties.

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values": {"NfcUID": "1234xyz"},
 },
 "status": "0",
 "error: {}
 }

assert_identity
The assert_identity operation provides an NEA with the ability to confirm that a Nymi Band that is
assigned to a specific user is authenticated and within Bluetooth range.

Trusted Communication

Trusted communication between the Nymi-enabled Application and the Nymi Band occurs using the
assert_identity operation. The assert_identity command completes a cryptographic handshake with the
Nymi Bandand verifies user and Nymi Band identity.

TLS protocol ensures that NEAs and Nymi Bluetooth Endpoint connect to the trusted / Agent Nymi
Security Protocol secures communication between and Nymi Bands.

The assert_identity command completes a cryptographic handshake with the Nymi Band and verifies
user/band identity.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 24

Request Operations

Note: The Nymi Band must be in an authenticated state when you call the assert_identity operation.

JSON Object Format

Define the assert_identity JSON object in the following format.

 {
 "operation": "assert_identity",
 "exchange": "xchange_value",
 "payload": {
 "nes_url": "https_url_to_nes",
 "device": "NymiBandID",
 "assert_type": "assert_user"
 }
 }

where:

• nes_url field is the URL for the NES website application. You require this parameter in the first init
call. The format of the URL is https_url_to_nes

• NymiBandID is the Nymi Band (or device) ID value that is returned in the lookup result.

Example

The following code block provides an example of a JSON object that instructs NAPI to
assert the identity of the user with device ID C2:FA:D7:F0:D7:96.

 {
 "operation": "assert_identity",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "nes_url": "http://nes.nymi.com/nes/",
 "device": "C2:FA:D7:F0:D7:96",
 "assert_type": " assert_user "
 }
 }

Results

A successful assert_identity operation produces a response with the following properties.

 {
 "operation": "assert_identity",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "Username": "Jsmith",
 "Domain": "Corp"
 },
 "status": "0",
 "error: {}
 }

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 25

Request Operations

presence update
Using the presence update request, you can retrieve the current state of the Nymi Band. Presence update
requests are non transactional. The presence request has no response and a presence response is not tied
to a specific request.

When Nymi API sends a presence update request, the system replays the last presence update that
was received. When the presence state changes, a Nymi-enabled Application receives an automatic
notification.

Presence is relative to an endpoint (the response indicates if the Nymi Band is in range of the NEA).
A Nymi Band can be present on some endpoints, but absent on others. If the presence state is false the
presence state returns as absent.

JSON Object Format

Define the presence request JSON object in the following format.

 {
 "operation": "presence",
 "exchange":"exchange_value",
 "payload": {
 "device": device
 }
 }

For presence notifications, refer to presence notifications on page 31.

Table 4: Presence Payload

Properties Value Description

Device device The Nymi Band MAC address.

State The value named state has a string value.

absent The state is not detected. A Nymi Band that has
not been reported on* should be considered the
same as a Nymi Band that has most recently been
reported absent. A Nymi Band that has an
absent state may be unheard from for a certain
length of time.

Note: * reported on refers to a) The Nymi Band
is connected via BLE and is present. b) It has sent
a BLE advertisement to the endpoint within the
last 30 seconds.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 26

Request Operations

Properties Value Description

unauthenticated Nymi Band is not authenticated (may or may
not have authenticators enrolled). A Nymi Band
that is not authenticated may be on-body and
unauthenticated or is being charged.

weak Nymi Band is in an authenticated state. The
advertisement authentication code is not verified.

See presence notification for information about returned parameters.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 27

Response Messages and Notifications

Response Messages and Notifications

By default, a response message contains the operation value, the payload, and the status value of
the request.

• Responses are messages that are generated as a result of the operations previously submitted to
NAPI.

• Notifications are system-generated messages that provide information about state changes in the
environment. Notifications are not generated in response to a request made by a function call.

• When the Presence of a Nymi Band changes, for example, when the Nymi Agent authenticates a
Nymi Band.

• When a Nymi Runtime error occurs.

The update function retrieves the notifications and responses from memory. Before the response appears
in the update queue, the system requires time to process the request and generate the response. Call the
update function on a single thread, to maintain one centralized place that handles all update responses.

IMPORTANT: In large environments, call update frequently to avoid the loss of responses and
notifications.

Response Messages and Notifications

• Responses are messages that are generated as a result of the operations previously submitted to
NAPI.

• Notifications are system-generated messages that provide information about state changes in the
environment. Notifications are not generated in response to a request made by a function call.

• When the Presence of a Nymi Band changes, for example, when the Nymi Agent authenticates a
Nymi Band.

• When a Nymi Runtime error occurs.

The update function retrieves the notifications and responses from memory. Before the response appears
in the update queue, the system requires time to process the request and generate the response. Call the
update function on a single thread, to maintain one centralized place that handles all update responses.

IMPORTANT: In large environments, call update frequently to avoid the loss of responses and
notifications.

Exchange Message

NAPI sends response messages and notifications to a memory buffer. There is only one response queue,
and requests are not tracked against their original threads.

Define an exchange value in the request_obj to match the requests that are sent from various threads to
the responses that are received on the update thread.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 28

Response Messages and Notifications

A response message appears in the following format:

 {
 "operation":"operation_value",
 "payload": {
 "property_name": "property_value",
 "property_name1": "property_value1",
 …
 "property_nameX": "property_valueX"
 }
 "status": 0 or error_code,
 "error": {
 "error_description": "error_description",
 "error_specifics": "specific error description"
 }
 }

Consider the following:

• operation always appears in the response and the value depends on the reason for the response.

• For a request response, the operation_value matches the operation_value in the request.
• For a notification response that is the result of an error, the operation_value is error.

• payload always appears in the response. If the payload does not contain properties or the response
results in an error, the payload will appear empty. For example, "payload": {}.

• status is 0 when the operation is successful and an integer value that is greater than zero when the
operation fails.

• error always appears in the response and the value depends on the reason for the response.

• If the response is the result of a successful request, error is empty. For example, "error": {}.
• If the response is the result of a failed request or error notification, status displays an error

code, and error contains descriptive information about the failure. See Error Handling for more
information.

update function
Use the update function to retrieve responses for requests and system notifications from NAPI.

The declaration for the update function is as follows:

typedef const char* (WINAPI* UPDATE_FUNC_POINTER)(int timeout_ms);
UPDATE_FUNC_POINTER update = NULL;

Where timeout_ms is an integer value that represents the number of milliseconds (ms) that the update
function waits for a response before timing out.

Ensure that you do not call update simultaneously on two threads.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 29

Response Messages and Notifications

Results

The update function returns a pointer to a JSON message as an UTF-8 string. The string has one of the
following values:

• Empty string, when a timeout occurs
• Valid JSON string

assert_identity response
The assert_identity request returns Username and Domain. properties

assert_identity Results

The UserStatus property is an optional property. The UserStatus is stored in the Active Directory (AD).

If the UserStatus option is set in the NES console in the Policies > Active Directory page, the Active
Directory status appears in the assert_identity response. If the option is not set, it does not return in the
response.

The UserStatus option has the following possible values:

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Locked User account is locked. This status can appear with
Active and Password Expired.

PasswordExpired User account has an expired password. This status can
appear with Active and Locked.

The last three properties can be combined into a coma separated list.

By default, NES disables support for user status checks in AD. Contact the NES Administrator to
enable AD user status checking, and optionally the checking interval in the NES Administrator
Console.

A successful assert_identity operation produces a response with the following properties.

 {
 "operation": "assert_identity",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "Username": "Jsmith",
 "Domain": "Corp"
 "UserStatus": "Active"

 },
 "status": "0",

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 30

Response Messages and Notifications

 "error: {}
 }

initialization error notifications
After initialization, NAPI might disconnect from the Nymi Agent, which results in update retrieving
an error notification similar to the following example.

 {
 "operation": "error",
 "exchange": null,
 "payload": {},
 "status": 4000,
 "error": {
 "error_description": "Nymi Agent missing.",
 "error_specifics":""
 }
 }

When a disconnect occurs, NAPI automatically attempts to reconnect to Nymi Agent. Any requests
that an NEA performs will fail until it retrieves a reconnection notification.

A reconnection notification appears similar to the following:

 {
 "operation": "reconnection",
 "exchange": "null",
 "payload": {},
 "status": 0,
 "error": {}
 }

presence notifications

When Nymi API (NAPI) detects a change in Nymi Band presence, NAPI generates a presence
notification.

The update calls that you perform after you perform the init operation retrieve a sequence of presence
notifications, one for each present Nymi Band (if any Nymi Bands are present within range. Presence
updates are non transactional. The system will return any changes to presence.

It is recommended that you develop a method for your application that tracks when the Nymi Bands
come in and out of range.

Presence notifications appear in the following format:

 {
 "operation":"presence",

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 31

Response Messages and Notifications

 "exchange":null,
 "status":0,"
 payload":{
 "device": device,
 "proximity":"proximity value",
 "service_request_state":service request state
 "state":state
 },
 "error":{}
 }

where:

• proximity_value: determined by the distance between the Nymi Band and the BLE adapter. The
proximity_value will change when the Nymi Band moves closer or farther from the BLE adapter.
The threshold (distance) for the proximity_value is determined in the nbe.toml file.

Note: To edit the nbe.toml file, refer to Editing the nbe.toml File on page 35.
• state: determined by the state of the Nymi Band; weak, absent, or unauthenticated.
• service request state: a flag that accompanies each presence notification and determines

if there is a message in the Nymi Band that is ready to be downloaded. If the value of
service_request_state is '1', the Nymi Band has a message. If the value is '0', there are no
messages.

Note: If the payload contains only the device, no response is returned for this operation. A notification
is returned, which is not tied to any request and does not contain any values.

Table 5: Proximity values for presence notifications

Proximity
values

Definition Example: Nymi Lock Control Behavior

4 The BLE adapter does not
detect the Nymi Band.

For example, the user may be in another room.

When the user enters the BLE adapter range, the proximity_value
will go from 4 to 3. Nymi Lock Control does not perform any
actions.

When the user leaves the BLE adapter range, the proximity_value
goes from 3 to 4. Nymi Lock Control does not perform any
actions.

3 The BLE adapter detects the
presence of the Nymi Band.

For example, the user is in the same room as their user terminal.

When the user moves closer to the BLE adapter, the
proximity_value will go from 3 to 2. Nymi Lock Control does not
perform any actions.

When the user moves further from the BLE adapter, the
proximity_value goes from 2 to 3. Nymi Lock Control locks the
user terminal if it is unlocked.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 32

Response Messages and Notifications

Proximity
values

Definition Example: Nymi Lock Control Behavior

2 The BLE adapter is close to
the Nymi Band.

For example, the user is near their user terminal.

Nymi Lock Control keeps the user terminal unlocked while the
user remains within this range (proximity_value is 2 or less). While
Nymi Lock Control is enabled, the user may press the Enter key or
the space bar on their keyboard to unlock their user terminal.

When the user moves the Nymi Band closer to the BLE adapter,
the proximity_value goes from 2 to 1. Nymi Lock Control will
allow the user to access their user terminal without entering their
credentials.

When the user moves the Nymi Band further from the BLE
adapter, the proximity_value goes from 1 to 2.

1 The BLE adapter and the
Nymi Band are in very close
range.

For example, the user may be sitting at their user terminal.

When the user moves the Nymi Band closer to the BLE adapter,
the proximity_value goes from 1 to 0. This initiates a tap intent.

When the user moves the Nymi Band away from the BLE adapter,
the proximity_value goes from 0 to 1. This ends a tap intent.

0 The BLE adapter and the
Nymi Band are adjacent
(within 4 inches or 10 cm).

For example, the user places their Nymi Band on top of their BLE
adapter.

A tap intent is in progress and indicates a task.

Table 6: State values for presence notifications

State Value Definition

Absent The Nymi Agent cannot communicate with the Nymi Band. This
state also applies when a user wears an unenrolled Nymi Band.

Reasons for Nymi Band absence include:

• Nymi Band has been removed from the body.
• Nymi Band has not communicated with the Nymi Agent for at

least 30 seconds.
• Nymi Band has not been within the range of the BLE Adapter for at

least 30 seconds.

Unauthenticated Nymi Band is enrolled and but not authenticated.

Weak Nymi Band is in an authenticated state.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 33

Response Messages and Notifications

Bluetooth notifications
Nymi Bluetooth Endpoint is a client service that communicates with the Bluetooth Adapter. Bluetooth
notifications for Bluetooth Adapter status are non-transactional.

The Bluetooth Adapter communicates to the Nymi Band. Each time that a Bluetooth Adapter becomes
available, the update function retrieves a notification in the following format.

 {
 "operation": "ble_ready",
 "exchange": null,
 "status": 0,
 "payload": {},
 "error ": {}
 }

If a Bluetooth Adapter becomes unavailable, the update function retrieves an error notification in the
following format.

 {
 "operation": "error",
 "exchange": null,
 "payload": {},
 "status": "error_code",
 "error": {
 "error_description":"error_description>",
 "error_specifics":"error_specifics"
 }
 }

where error_code is one of the following values: 5000, 5010, 5100.

For more information about error codes, see Error Handling.

Intent Notification

An intent occurs when a user taps their authenticated Nymi Band next to an NFC reader or Bluetooth
radio antenna, and is used to signal an intent to take an action. For example, an intent to provide an e-
signature is generated when a user taps their authorized Nymi Band against an NFC reader.

A NES server must be specified in the init message in order for intent notifications to be received.

Intent notifications appear in the following format:

 {
 "operation": "intent",
 "exchange": null,
 "payload": {
 "device": "MAC address",

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 34

Response Messages and Notifications

 "type": "see below",
 },
 "status": 0,
 "error": {}
 }

where device is the Nymi Band device ID.

type is used to identify the manner in which the action was initiated.

type field description

ble A user tapped an authenticated Nymi Band against a
BLE device or is in close proximity to a BLE radio
antenna, such as a BLE adapter or built-in Bluetooth
receiver.

nfc A user tapped an authenticated Nymi Band against an
NFC reader or is in close proximity to read range of the
NFC reader.

Status Codes

A 2201 status code is reported when the NFC reader is unsuccessful at mapping the NFC ID to the
enrolled Nymi Band.

A 2200 status code is reported when a NES communication error (for example, NES is offline) occurs.

Note: The 2201 and 2200 status codes do not contains a device ID in the payload.

Editing the nbe.toml File

A backup configuration file is installed on the user terminal when the Nymi Bluetooth Endpoint
is installed or updated. This file, nbe.default.toml, contains the default values that control BLE tap
behavior with the Nymi Band and BLE adapter. Use the values in the nbe.default.toml file as a template
for the nbe.toml file. These files are located in C:\Nymi\Bluetooth_Endpoint\ .

Note: Nymi Bluetooth Endpoint will only recognize RSSI values in the nbe.toml file. Retain a
backup of a useful configuration by copying the nbe.toml file and renaming it.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 35

Response Messages and Notifications

Table 7: Default configuration settings for Nymi Lock Control and BLE tap intent

nbe.toml Entry Default Value Description

agent_url "ws://127.0.0.1:9120/
socket/websocket"

(do not change)

Identifies the location of the agent URL. The default
value shown in this table is generated if the agent is
installed locally. If the agent URL is installed centrally
(via remote installation), the hostname of the URL will be
different.

The agent_url must be present when using an
nbe.toml file.

rssi_window_tap 10 This determines the duration the Nymi Band must be
within tap-distance of the BLE radio antenna to complete
a tap.

A larger value increases the duration required to perform
and decrease the sensitivity.

rssi_window_long 50 This determines the frequency that Nymi Bluetooth
Endpoint checks the distance between the BLE radio
antenna and the Nymi Band. Nymi Bluetooth
Endpoint tracks trends in these changes to trigger a
Nymi Lock Control action, such as keep unlocked
when present, lock when away, or unlock
when present.

rssi_tap_threshold 0

(must be 0 or negative)

This determines the range at which a tap event will occur.
A smaller negative value means a closer distance to the
BLE antenna.

BLE tap is disabled by default (value = 0). Enter a
non-zero, negative number to enable BLE tap. Nymi
recommends an RSSI value of -42.

If the Nymi Band maintains a minimum distance specified
by rssi_tap_threshold, for a duration rssi_window_tap, a
BLE tap is performed.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 36

Response Messages and Notifications

nbe.toml Entry Default Value Description

rssi_cutoff_close -70

(must be 0 or negative)

This determines the outer range of the close distance-
threshold (excluding tap distance) for Nymi Lock Control.

Enter 0 to bypass the proximity functionality of Nymi
Lock Control.

If the Nymi Band maintains a close distance to the BLE
radio antenna and the RSSI values measured are within
the rssi_cutoff_close value, Nymi Lock Control keeps the
user terminal unlocked.

If the Nymi Band moves away from the BLE radio
antenna, and the RSSI values measured are on a
decreasing trend and goes from the rssi_cutoff_close
value to the rssi_cutoff_far value, Nymi Lock Control
locks the user terminal.

rssi_cutoff_far -75

(must be negative)

This determines the outer range of the far distance-
threshold (excluding tap distance) for Nymi Lock Control.

If the Nymi Band moves towards the BLE radio antenna,
and the RSSI values measured are on an increasing
trend and goes from the rssi_cutoff_far value to the
rssi_cutoff_close value, Nymi Lock Control unlocks the
user terminal.

1. Make a copy of the C:\Nymi\Bluetooth_Endpoint\nbe.default.toml file, and name the file nbe.toml.

2. Edit the nbe.toml file with a text editor.

3. Edit the RSSI values in the file. Refer to the descriptions in the table above.

4. Save the nbe.toml file.

5. Restart the Nymi Bluetooth Endpoint.

a) Press the Windows key on the keyboard, or click the start button on the toolbar. Enter "Services"
in the search bar. The Services application window appears.

b) Search for Nymi Bluetooth Endpoint in the Services application.
c) Right-click Nymi Bluetooth Endpoint and restart it.

Once restarted, the Nymi Bluetooth Endpoint application will be updated with the edits made
in the nbe.toml file. Updated BLE tap intent and Nymi Lock Control settings will be implemented
on the user terminal. If the nbe.toml file is not present, Nymi Bluetooth Endpoint behaves under
default settings.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 37

Error Handling

Error Handling

The update function retrieves errors in the following scenarios.

• When a request operation fails, the response contains a non-zero "status" and error contains
information about the failure. For example, when the assert_identity request was called with an
incorrect nes_url value.

• When an update receives a notification response from NAPI as the result of a runtime error, the
operation value is "error". For example, when the BLE adapter is removed from the USB port.

Notifications and response messages that result in an error appear in the following format:

 {
 "operation": "operation_value",
 "exchange": "null" or "exchange_value",
 "payload": {}
 "status": status_code,
 "error": {
 "error_description": "general error description",
 "error_specifics": "specific error description"
 }
 }

where:

• operation_value provides the operation value for the response or notification. For a response, the
value is the same value that appeared with the request. For a notification, the value is error.

• payload does not contain any properties.
• exchange contains the user-defined exchange value, as it appeared in the request. If an exchange

value was not specified in the request, the exchange value is null.
• status_code provides the status code that is associated with the error. See the Status codes table for

more information
• error_description provides the description of the error that is associated with the status code.
• error_specifics provides additional information about the source of the error. For example, when a

request specifies invalid parameters.

The following table summarizes the values that can appear in the status_code and error_description.

Status Code
Nymi provides you with status codes that assist you in solving SDK code-related issues and errors.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 38

Error Handling

Table 8: Status codes

Status code Error description

0 Operation completed successfully.

1000 Request made with invalid JSON.

1100 Request other than init sent before initialization.

1110 init request sent when already initialized.

1200 Cannot connect to NES. NES URL not specified in init.

2000 Request made with invalid parameters.

2102 Request made with device that does not exist. This is a
permanent error, retries will fail.

2200 Problem occurred while communicating with NES.

2201 The requested query was not found on NES.

3000 Operation timed out. Retry the operation.

3010 Operation interrupted. For example, when the battery
dies.

3100 Operation made during invalid band state.

4000 Connection to Nymi Agent lost. When you see this
error, requests fail until update retrieves a reconnection
notification.

4010 Request made while disconnected from Nymi
Agent.

5000 Something went wrong with the Bluetooth Adapter.

5010 The Bluegiga BLED112 dongle is missing.

5100 Nymi Bluetooth Endpoint is missing or
stopped.

6000 A temporary, recoverable error that indicates that
the Nymi Band is currently not able to perform the
operation, but the operation might succeed if the NEA
tries the operation again.

7000 Error originating from the Nymi Band. Applies to
device operations only.

8000 init payload requires the token and nes_url properties.

8001 NEA data is corrupt or not accessible.

8002 Missing organization name in the L1 certificate.

8100 init payload requires otp property.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 39

Error Handling

Status code Error description

9000 An error occurred. See error_specifics for more details.

Note: Status codes 1000 and 2000, should be considered the same as they indicate a messaging issue
(for example, invalid JSON).

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 40

Troubleshooting

Troubleshooting

NAPI writes information to log files that allow you to monitor and troubleshoot the NEA.

For additional assistance, visit the Support page on the Nymi website, or contact your Nymi Solution
Consultant.

The following table summarizes the log files that are available for troubleshooting.

Table 9: Log file locations

Component Log location

NAPI By default, the current working directory.

Nymi Agent /usr/lib/nymiagentd/nymi_agent.log

Nymi Bluetooth Endpoint /var/log/nymi/nymi_bluetooth_endpoint.log

Enable debugging
Debug logging is available, but should not be enabled in a production environment.

On CentOS 7, you can enable the debug logging for the Nymi Agent, and Nymi Bluetooth Endpoint by
editing each of their service files.

1. On CentOS 7, navigate to the service files located at:

nbed - Nymi Bluetooth Endpoint Daemon

• service file location/directory: /etc/systemd/system/nbed.service

nymiagentd - Nymi Agent Daemon

• service file location/directory: /etc/systemd/system/nymiagentd.service

2. Add the following text to the [Service] section of each of the files:Environment=NYMI_DEBUG=1

3. Next, run the $ sudo systemctl daemon-reload command.

4. Next, run $ sudo systemctl restart nbed command.

5. Next, run $ sudo systemctl restart nymiagentd command.

6. Restart the Nymi Bluetooth Endpoint services.

Service information and runtime errors

You can run the following command to view information about the installation and runtime errors.

$ journalctl -xe

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 41

https://support.nymi.com/hc/en-us/requests/new

Troubleshooting

Checking the service status

Check the status of the nbed service by running the following command:

$ systemctl status nbed

Check the status of the nymiagentd service by running the following command:

$ systemctl status nymiagentd

Starting services commands
By default, the services start automatically, but you can run the command whenever you need to start
the services.

Optionally, start the services using the following commands:

$ sudo systemctl start nbed

$ sudo systemctl start nymiagentd

The NymiAgentd is installed in the following directory:/usr/lib/nymiagentd. The NBEd binary is located in
the following path:/usr/sbin/nbed.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 42

Appendix

Appendix

Review this section for supplementary information about Nymi API C Interface.

Authentication requirements
An NEA and the Nymi Band establish trusted communication by using certificates. The first time that
a user runs the NEA, the NEA retrieves a certificate from NES. The NEA certificate is stored in a
keystore. Access to the keystore, by default, is enabled for all users

The NES Administrator can configure automatic or manual certificate retrieval. When the NES
Administrator configures manual certificate retrieval, to initiate the retrieval process, you must specify a
one-time password (OTP) in the init operation.

Acquire an Authentication Token
The first operation that the NEA must call is an init operation. If the init call results in a status code
8000, the (NEA must make an HTTP request to the NES REST API and acquire a token).

You can access NES by using one of the following endpoints to acquire the initial token:

• Basic Authentication
• Basic Authentication with cookies
• Negotiate

Basic Authentication (https://AS_url/api/BasicLoginWithToken)

This endpoint requires you to pass the user credentials in the authorization header.

A successful call:

• Returns one of the following outputs:

• When Accept Header is set to application/xml or application/shtml+xml, the following xml
output:

 <LoginWithTokenResult xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://
schemas.datacontract.org/2004/07/Providers.Interfaces">
 <Success>true</Success>
 <Token>
 …
 </Token>
 </LoginWithTokenResult>

• When the Accept header is not defined, the following JSON string:

 {"Success"="true", "Token"="<token>"}

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 43

Appendix

• Passes the token in the WwwAuthenticate header.

Basic Authentication with Cookies (https://AS_url/api/BasicLoginWithCookies)

This endpoint requires you to pass the user credentials in the authorization header.

A successful call:

• Returns the following JSON string:

{"Success"="true", Cookies={"cookie1": "value1", "cookie2": "value2"}}

• Pushes the token as a NymiAuth cookie.

Copyright ©2021 Nymi Connected Worker Platform Nymi API for Linux Guide 3.0 44

Copyright ©2021
Nymi Inc. All rights reserved.

Nymi Inc. (Nymi) believes the information in this document is accurate as of its publication date.
The information is subject to change without notice.

The information in this document is provided as-is and Nymi makes no representations or
warranties of any kind. This document does not provide you with any legal rights to any
intellectual property in any Nymi product. You may copy and use this document for your
referential purposes.

This software or hardware is developed for general use in a variety of industries and Nymi
assumes no liability as a result of their use or application.Nymi, Nymi Band, and other trademarks
are the property of Nymi Inc. Other trademarks may be the property of their respective owners.

Published in Canada.
Nymi Inc.
Toronto, Ontario
www.nymi.com

http://www.nymi.com

	Contents
	Preface
	Nymi API for Linux Overview
	Nymi API for Linux Architecture
	Development Tools
	Supported Platforms
	Supported NFC Reader
	Nymi API for Linux Sample Application

	Nymi API for Linux Installation
	Installing the Nymi API for Linux
	Importing TLS Certificates Obtained from the NES Server
	Copying and Extracting the TLS Certificate

	Configuring NFC readers
	Nymi Component Configuration
	Uninstalling Nymi Linux Runtime
	Creating NEAs with Nymi API
	Call Concurrency
	Request and Response

	Request Operations
	subscribe operation
	init operation
	lookup
	assert_identity
	presence update

	Response Messages and Notifications
	update function
	assert_identity response
	initialization error notifications
	presence notifications
	Bluetooth notifications
	Intent Notification
	Editing the nbe.toml File

	Error Handling
	Status Code

	Troubleshooting
	Enable debugging
	Service information and runtime errors
	Checking the service status
	Starting services commands

	Appendix
	Authentication requirements
	Acquire an Authentication Token

