
Nymi API C Interface Guide
Nymi Connected Worker Platform

v3.0
2021-05-03

Contents

Preface.. 4

Nymi API for C Interface Overview...6
Nymi API for C Interface Architecture...6
Development Tools.. 7
Supported Platforms...7
Supported NFC Readers.. 7
Nymi API for C Interface Sample Application...7

Installing the Nymi API C Interface...8

Nymi Component Configuration... 9

Creating NEAs with Nymi API... 10
Overview of NAPI message handling... 10
Call Concurrency... 10
Request and Response... 10
Nymi API operations... 11

Request Operations...12
subscribe operation...13
init operation.. 14
lookup... 18
assert_identity...20
presence update.. 22
device version...23

Response Messages and Notifications... 25
update function...26
initialization error notifications..27
Presence Notifications..27
Bluetooth notifications... 30
Intent Notification.. 31
Editing the nbe.toml File... 31
assert_identity response..33

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 ii

Error Handling..35
Status Code...35

Troubleshooting... 38
Enable debug mode..38

Information for C/C++ Developers... 39
Preparing the C/C++ project to use NAPI.. 39

Information for C# Developers..40
Preparing the C# project to use NAPI.. 40

Appendix...42
Authentication requirements.. 42

Acquire an Authentication Token...42

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 iii

Preface

Preface

Nymi™ provides periodic revisions to the Nymi Connected Worker Platform. Therefore, some
functionality that is described in this document might not apply to all currently supported Nymi
products. The product release notes provide the most up to date information.

Purpose

This document is part of the Connected Worker Platform (CWP) documentation suite.

This document provides Nymi developers with an alternative way to utilize the functionality of the
Nymi SDK, over a WebSocket connection managed by a web-based or other applications.

Audience

This guide provides information to Developers.

Revision history

The following table outlines the revision history for this document.

Table 1: Revision history

Version Date Revision history

03 May 3, 2021 This guide was updated to
incorporate more detail with
presence notifications and intent
notifications with respect to Nymi
Lock Control and BLE intent.
This guide was also updated with
rebranding from NEE to Connected
Worker Platform.

02 September 18, 2020 Reissued to clarify behaviour
for the presence operation,
presence notification and bluetooth
notifications.

01 December 20, 2019 This guide is reissued due to
document version update. There are
no content changes since NEE 2.6.0.

Related documentation

• Nymi Connected Worker Platform NES Deployment Guide

This document provides an overview of the components and the steps that are required to deploy
the Nymi Enterprise Server (NES). This installation uses the Nymi Token Service to

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 4

Preface

install certificates that enable communication between components. This document also provides
information about deploying the Connected Worker Platform in a Citrix or RDP environment.

• Nymi Connected Worker Platform Administration Guide

This document provides information about how to use the NES Administrator Console to
manage the Connected Worker Platform (CWP) system. This document describes how to
set up, use and manage the Nymi Band™, and how to use the Nymi Band Application. This
document also provides instructions on deploying the Nymi Band Application and Nymi Runtime
components.

• Connected Worker Platform Release Notes

This document provides supplemental information about the Connected Worker Platform, including
new features, limitations, and known issues with the Connected Worker Platform components.

• Nymi Connected Worker Platform Troubleshooting Guide

This document provides information about how to troubleshoot issues and the error messages that
you might experience with the NES Administrator Console, the Nymi Enterprise Server
deployment, the Nymi Band, and the Nymi Band Application.

How to get product help

If the Nymi software or hardware does not function as described in this document, contact your
administrator for immediate support. Alternatively, you can submit a support ticket to Nymi, or email
support@nymi.com

How to provide documentation feedback

Feedback helps Nymi to improve the accuracy, organization, and overall quality of the documentation
suite. You can submit feedback by using support@nymi.com

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 5

https://support.nymi.com/hc/en-us/requests/new
support@nymi.com
support@nymi.com

Nymi API for C Interface Overview

Nymi API for C Interface Overview

The Nymi SDK provides Developers with libraries, APIs, sample code and documentation for building
a Nymi-enabled Application (NEA). The Nymi API C Interface architecture is part of the Nymi
SDK.

Nymi SDK Overview

Nymi API exposes a very simple C interface that provides the following benefits:

• Minimizes the complexity of the integration and allows bidirectional communication by exchanging
messages in JSON format.

• Supports the use of foreign function interfaces (FFIs), which enables developers to use the SDK with
any language or environment that supports linking with C libraries.

The Nymi API C Interface contains the following components.

• Nymi Runtime—Facilitates communication between an NEA and Nymi Bands. Install the Nymi
Runtime on the developer machine and on any machine where the NEA will run.

• Nymi API (NAPI)—Provides developers with the ability to interface with the Nymi Runtime and
communicate with Nymi Bands.

SDK Package Contents

The Nymi SDK package contains the following artifacts:

• nymi_api.dll
• sample apps (C/C++ and C#)
• BleDriver_xx.msi
• Nymi Runtime installer

Nymi API for C Interface Architecture

Nymi API supports enterprise integration and deployment of features that are available in the
Connected Worker Platform.

Nymi has created APIs that supports the enterprise integration and development of features that are
available in the Connected Worker Platform software.

The Nymi API C Interface supports the Nymi Bluetooth Endpoint and also offers NFC
support. For example, applications utilizing this functionality allow the Nymi Band to tap an NFC
device, which sends an intent event message to the Nymi Agent. To enable NFC support, the NFC
reader must be connected to a terminal with a compatible version of Nymi Bluetooth Endpoint installed.

For information about deploying in a Citrix or RDP environment, see the Nymi Connected Worker
Platform NES Deployment Guide.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 6

Nymi API for C Interface Overview

Development Tools
To develop NEAs on a Windows platform, you can use one of the following tools.

• Any Microsoft-supported version of Visual Studio.
• Visual Studio Code (or any other code editor).

For C, C++, and C#, Nymi recommends that you use Visual Studio 2017.

Supported Platforms
Nymi API C Interface supports the following platforms.

• Microsoft Windows 10, 64-bit
• Microsoft Windows 7, 32-bit and 64-bit

Supported NFC Readers

The Nymi API C Interface supports multiple NFC readers. A list of supported NFC Readers is found in
the Nymi Connected Worker Platform Administration Guide.

The Nymi Bluetooth Endpoint monitors all attached and supported NFC readers and forwards
events from all NFC readers (there is no preference between readers).

The NFC reader is connected to the user's terminal where the Nymi Bluetooth Endpoint is installed and
are automatically detected by the Nymi Bluetooth Endpoint.

Nymi API for C Interface Sample Application
Nymi offers you a sample application that demonstrates some of the key functionality of the Nymi
solution.

The sample applications are located within the package at: nymi-sdk/windows/samplesApps

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 7

Installing the Nymi API C Interface

Installing the Nymi API C Interface

The Nymi API C Interface development package includes:

• Nymi API C Interface package, which includes the API DLL and supporting documentation
• Nymi Runtime installer

Perform the following steps to set up the Nymi API C Interface and the Nymi Runtime.

1. Extract the Nymi API C Interface package to the development machine.

2. Copy the nymi_api.dll file from the ..\nymi-sdk\windows\x86_64 directory to the Visual Studio
working directory.

Note: In a remote environment where the NEA is running on a different machine than the runtime, Visual c++
2013 and 2015 redistributables must be installed.

3. From the ..\nymi-sdk\windows\setup folder, run the Nymi Runtime Installer 5.4.x.y.exe file.

Where x.y is the version number of the Nymi API C Interface package.

Note: Nymi Runtime upgrades might prompt you to reboot the machine to complete the upgrade process,
but it is not necessary.

When the installation completes, the following services are started on the machine.

• Nymi Agent—Delegates requests and responses between the NEA and the Nymi Band.
• Nymi Bluetooth Endpoint —Establishes and secures the Bluetooth connection to the Nymi

Band.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 8

Nymi Component Configuration

Nymi Component Configuration

In order to create an environment that can utilize the services contained in the Nymi API C
Interface, specify the location of the Nymi Agent so that the Nymi Bluetooth Endpoint
can connect to it.

The Nymi API WebSocket Interface is installed on each RDP client. The Nymi API
WebSocket Interface service on each RDP client communicates with the Nymi Agent service,
which is installed on a separate host, on websocket port 9120.

1. Navigate to the location where the nbe.exe file is installed.

2. Open the C:\Nymi\Bluetooth_Endpoint\nbe.toml file.

3. Update the location of the Nymi Agent

• agent_url = 'ws://<FQDN>:9120/socket/websocket'

4. Optionally, you can set the location of the Nymi Bluetooth Endpoint by configuring the
endpoint_id parameter.

• endpoint_id = "<unique ID>"

By configuring the endpoint_id parameter, you need to use the subscribe operation. For more information
about the subscribe operation, see the Request Operations section in this guide.

Note: In centralized deployments where the Nymi Agent is running on a different computer from the
Nymi Bluetooth Endpoint and NEA, the server running the Nymi Agent must be able to receive incoming
WebSocket connections on TCP port 9120. Please ensure that port 9120 is open in the firewall on the server
running the Nymi Agent.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 9

Creating NEAs with Nymi API

Creating NEAs with Nymi API

Customer and partner developers can use the Nymi API C Interface to develop Nymi-enabled
Applications (NEAs) in programning languages, such as Java or C#. The API is written in JSON. This
chapter provides information about the supported operations.

To deploy an NEA, developers must install the Nymi Runtime on each terminal where the NEA
runs. The Nymi Runtime includes the following components: Nymi Bluetooth Endpoint, and
Nymi Agent.

Note: In this document, the use of device refers to the Nymi Band.

Overview of NAPI message handling
NAPI provides two function calls to handle messaging.

• request()—Used to send messages to NAPI.
• update()—Used to retrieve messages, such as response messages and system notifications from

NAPI.

Call Concurrency
NAPI has two FIFO (First-In, First-Out) message queues.

• Device queues—One message queue exists for each Nymi Band. When NAPI receives a device-
related message, NAPI dispatches the message to the appropriate device message queue, in the order
that the message is received. NAPI might dispatch messages to a device before dispatching messages
that have been queued longer, to another device.

• Non-device queue—One global message queue that stores messages that are not related to a device
operation, for example, the response for an init() call. NAPI dispatches non-device related messages
to the queue in the order that the messages are received.

Request and Response
The request() and update() calls are handled differently in memory.

• request()—NEA supplies the request message in a memory buffer. Before the call returns, Nymi API
creates a copy of the message.

• update()—After the function returns, Nymi API expects the NEA to copy the response message out
of the memory address provided by the update() call, before calling the update() function again.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 10

Creating NEAs with Nymi API

Nymi API operations
A request() call submits a message to Nymi API. Nymi API performs the operation that is contained in
the message. The result of the operation is a response message. Use the update function to retrieve the
response message.

For information about how to use the update function, see The update function section.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 11

Request Operations

Request Operations

The Nymi API C Interface contains request operations.

A request() call submits a message to Nymi API. Nymi API performs the operation that is contained
in the message. The result of the operation is a response message. Use the update function to retrieve
the response message. For information about how to use the update function, see The update function
section.

The declaration for the request function in C is as follows.

typedef int (*WINAPI REQUEST_FUNC_POINTER)(const char*);
REQUEST_FUNC_POINTER request = NULL;

The following diagram shows the request() call and message handling workflow for device operations.

Figure 1: Request function workflow

1. Create the request in a memory buffer and pass the request to Nymi API.
2. Nymi API creates a copy of the request message.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 12

Request Operations

3. Nymi API initiates the requested operation.

The request() call returns 0 when Nymi API accepts the message and returns a 1 when NEA the has
not been initialized. The NEA must run the init operation before Nymi API can accept any messages
other than init.

The request message is a null-terminated string containing a JSON object with the following key-value
pairs:

{
 "operation": "operation_name",
 "exchange": "exchange_string",
 "payload": {
 "property_name": "property_value",
 "property_name1": "property_value1"
 …
 "property_nameX": "property_valueX"
 }
 }

where:

• operation_name defines the operation for Nymi API to perform. For example, init, assert_identity,
and lookup.

subscribe operation
The subscribe_endpoint operation allows a Nymi-enabled Application (NEA) to change the
Nymi Bluetooth Endpoint to which it is subscribed..

The subscribe_endpoint operation allows an NEA to change the Nymi Bluetooth Endpoint to
which it is subscribed.

By default, each NEA is matched to it's local endpoint based on the IP address of the workstation. In
most deployments, the NEA and endpoint are correctly matched by default, and connect automatically.

subscribe_endpoint request operations appear in the following format:

In central deployments, certain network configurations, such as workstations that have multiple
network interfaces, may interfere with the automatic matching of the NEA and Nymi Bluetooth
Endpoint. In these cases, the subscribe operation must be used by the NEA to communication to
which workstation it wants to connect.

 {
 "operation": "subscribe_endpoint",
 "exchange":"exchange_value",
 "payload": {
 "endpoint_id": "bar"
 }
 }

where:

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 13

Request Operations

• operation is the subscribe_endpoint.
• exchange is any value and is used to match the response to the request.

payload:

• endpoint_id is based on the endpoint IP address.

The subscribe_endpoint operation returns status codes only, no errors are returned. The following table
displays possible status codes:

 {
 “Operation”: “subscribe_endpoint”,
 "exchange":"exchange_value",
 “payload”: {}
 “status”: 0,
 “error”: {}
 }

An NEA can only be subscribed to one endpoint at any given time. When a subscribe operation is
requested, the NEA is automatically unsubscribed from the endpoint it was previously subscribed to.
If any Nymi Bands were present on that endpoint, they will become absent, and the NEA will receive
corresponding presence update notifications. The NEA will then receive a Bluetooth status notification.
If the requested Nymi Bluetooth Endpoint has connected successfully and is in a ready state, the NEA
will receive a ble_ready notification, followed by presence update notifications for any present bands on
that endpoint. Otherwise, the NEA will receive an error message. See Bluetooth Notifications for more
information about possible error messages.

Note: The NEA will remain subscribed to the requested endpoint_id even if it is not able to connect
to that Nymi Bluetooth Endpoint. If the Nymi Bluetooth Endpoint becomes ready at a later time (for
example, that workstation is powered on), the NEA will receive a ble_ready message at that time.

init operation
The init operation initializes NAPI, configures communication channels between components, and
performs certificate enrollment when required. Ensure that init is the first operation that is requested by
the NEA. When the init operation succeeds, it is not necessary to call init again.

Initialization Options

There are three ways to call the init operation when initializing with certificate enrollment.

• nea_name
• nea_name + nes_url + token
• nea_name + nes_url + token + otp

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 14

Request Operations

JSON Object Format

Define the JSON payload for the init in the following format.

 {
 "operation": "init",
 "exchange": "exchange_value",
 "payload": {
 "nea_name": "name_of_application",
 "nes_url": "https_url_to_nes",
 "token": "token",
 "otp": "one_time_password",
 "log_path": "path",
 "url": "ws://agent_server:9120/socket/websocket",
 }
 }

where:

• name_of_application is the name that you assign to the NEA and is always required. The NES active
group policy configuration influences the name that you can specify, in the following way:

• When Manual OTP mode is enabled, you must specify the name as NEAs.
• When Manual OTP mode is not enabled, you can assign any name to the NEA.

Contact the NES Administrator to determine the active group policy configuration settings.
• nes_url field is the URL for the NES website application. You require this parameter in the first init

call. The format of the URL is https_url_to_nes
• token is an HTTP Bearer token that NES uses to authenticate the NEA user or computer. This

parameter is optional. If you will use this parameter, you must specify it in the first init call. Obtain
the token as described in the Appendix.

• one_time_password is the OTP that provides the NEA with the ability to generate the NEA
certificate. Include one_time_password in the payload when Manual OTP mode is configured in the
active group policy in NES. You require this parameter in the first init call. When you define this
parameter, you must also define the https_url_to_nes and token parameters.

• path is the log file path on the development machine. If you do not specify the path property, the
NEA uses the default log path, which is your current working directory.

• agent_server specifies the hostname of the machine that runs the Nymi Agent service.

Example

The following code block provides an example of a JSON object that instructs NAPI to
initialize the NEA that requires an OTP to retrieve a certificate.

 {
 "operation": "init",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1211",
 "payload": {
 "nea_name": "NEAs",
 "nes_url": "https://server-2.nymi.lab/nes",
 "token": "eyJVc2VyVG9rZW5TdHJpbmciOiJMbk..",
 "otp": "4C82F6CF3ABED723",

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 15

Request Operations

 "url": "ws://agent.nymi.com:9120/socket/websocket"
 }
 }

Results

A successful init operation produces a response with the following properties.

 {
 "operation": "init",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1211",
 "payload": {}
 "status": 0,
 "error": {}
 }

An unsuccessful init operation generates a non-zero status.

The following table summarizes the status codes that can appear, and the payload properties that you
require for a subsequent init call.

Table 2: Init Status Codes

Status code Payload properties for subsequent init call

0 Operation completed successfully with the defined
payload. The system is initialized. Additional calls to
init are not required.

11xx Operation completed successfully with the defined
payload. When a request other than init is sent before
the system is initialized, the system returns a status
code 1100. If the system was already initialized, but
a request for init was sent, the system returns a status
code 1110.

8000 Payload is missing the token and nes_url property
definitions. Call init again and include the token and
nes_url properties, in addition to the nea_name.

8100 Payload includes the token and nes_url but is missing
the OTP property definition. Call init again and include
the otp in the payload, in addition to the nea_name,
token and nes_url properties.

9000 There was an issue with the certificate from NES.
Contact the NES Administrator for assistance.

The following flowchart provides an overview of how you can use NAPI responses to an init call, to
determine the properties that you need to include in the payload file.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 16

Request Operations

Figure 2: NAPI response calls to init

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 17

Request Operations

lookup
An NEA requires the device ID of a Nymi Band to communicate with the Nymi Band. You can retrieve
the device ID of a Nymi Band from NES by using the lookup operation.

Use the lookup operation to determine the following values:

• Device ID (Device operations require that you specify the Nymi Band (or device) ID value that
appears in the response.

• NfcUID of the Nymi Band
• Domain and name of the user.
• User status in Active Directory (AD). The AD status for a user appears in the response when user

status check is enabled in NES. The following table summarizes the possible user statuses.

Table 3: AD user statuses

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Locked User account is locked. This status can appear with
Active and Password Expired.

PasswordExpired User account has an expired password. This status
can appear with Active and Locked.

By default, NES disables support for user status checks in AD. Contact the NES administrator to
enable AD user status checking, and optionally the checking interval in the NES Administrator
Console.

JSON Object Format

Define the payload JSON object for the lookup command in the following format.

 {
 "operation": "lookup",
 "exchange": "exchange_value",
 "payload":
 {
 "nes_url": "https_url_to_nes",
 "query": "query_JSON",
 "lookup_keys": "key_JSON"
 }
 }

where:

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 18

Request Operations

• nes_url field is optional if not provided it uses what is configured for the Nymi Agent. See the
Configuration Overview .

• query field is a JSON object that defines the query values. Acceptable values include NfcUID,
Domain and Username, and NymiBandID.

• lookup_keys field is a JSON array that contains a list of values that you want to appear in the
response. Supported values include NfcUID, Domain and Username, NymiBandID, and UserStatus.

Note: The property names Domain and Username are case-sensitive.

Example 1

The following code block provides an example of a JSON object that instructs NAPI
to provide the NfcUID of a device and the user status for a user named JSmith in the
MyCorpDomain domain.

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "Domain":"MyCorpDomain",
 "Username": "JSmith"
 }
 "lookup_keys": ["NfcUID", "UserStatus"]
 }
 }

Results 1

A successful lookup operation produces a response with the following properties.

In this example, the check user status in AD option is enabled in NES, as a result, the response includes
the UserStatus property.

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values":{"NfcUID": "1234xyz", "UserStatus":"Active|PasswordExpired"},
 },
 "status": "0",
 "error: {}
 }

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 19

Request Operations

Example 2

The following code block provides an example of a JSON object that instructs
NAPI to provide the NfcUID of a device with Nymi Band (or device) ID
"C2:FA:D7:F0:D7:96".

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "NymiBandID": "C2:FA:D7:F0:D7:96"
 }
 "lookup_keys": ["NfcUID"]
 }
 }

Results 2

A successful lookup operation produces a response with the following properties.

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values": {"NfcUID": "1234xyz"},
 },
 "status": "0",
 "error: {}
 }

assert_identity
The assert_identity operation provides an NEA with the ability to confirm that a Nymi Band that is
assigned to a specific user is authenticated and within Bluetooth range.

The assert_identity command completes a cryptographic handshake with the Nymi Band and verifies
user/band identity.

Note: The Nymi Band must be in an authenticated state when you call the assert_identity operation.

Define the assert_identity JSON object in the following format.

 {
 "operation": "assert_identity",
 "exchange": "exchange_value",
 "payload": {
 "nes_url": "https_url_to_nes",
 "device": "NymiBandID",

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 20

Request Operations

 "assert_type": "assert_user"
 }
 }

where:

• nes_url field is optional if not provided it uses what is configured for the Nymi Agent. See the
Configuration Overview .

• NymiBandID is the Nymi Band (or device) ID value that is returned in the lookup result.

Example

The following code block provides an example of a JSON object that instructs NAPI to
assert the identity of the user with device ID C2:FA:D7:F0:D7:96.

 {
 "operation": "assert_identity",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "nes_url": "http://nes.nymi.com/nes/",
 "device": "C2:FA:D7:F0:D7:96",
 "assert_type": " assert_user "
 }
 }

assert_identity Response

The UserStatus property is an optional property. The UserStatus is stored in the Active Directory (AD).

If the UserStatus option is set in the NES console in the Policies > Active Directory page, the Active
Directory status appears in the assert_identity response. If the option is not set, it does not return in the
response.

The UserStatus option has the following possible values:

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Locked User account is locked. This status can appear with
Active and Password Expired.

PasswordExpired User account has an expired password. This status can
appear with Active and Locked.

The last three properties can be combined into a coma separated list.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 21

Request Operations

By default, NES disables support for user status checks in AD. Contact the NES administrator to
enable AD user status checking, and optionally the checking interval in the NES Administrator
Console.

A successful assert_identity operation produces a response with the following properties.

 {
 "operation": "assert_identity",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "Username": "Jsmith",
 "Domain": "Corp"
 "UserStatus": "Active"

 },
 "status": "0",
 "error: {}
 }

presence update
Using the presence update request, you can retrieve the current state of the Nymi Band. Presence update
requests are non transactional. The presence request has no response and a presence response is not tied
to a specific request.

When a presence update request is sent, the system will replay the last presence update received.
When a presence state changes you will receive automatic notifications. For information about these
notifications, see presence update notification.

Presence is relative to an endpoint (the response indicates if the Nymi Band is in range of the NEA).
A Nymi Band can be present on some endpoints, but absent on others. If the presence state is false the
presence state returns as absent.

JSON Object Format

Define the presence request JSON object in the following format.

 {
 "operation": "presence",
 "exchange":"exchange_value",
 "payload": {
 "device": device
 }
 }

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 22

Request Operations

Table 4: Presence Payload

Properties Value Description

Device device The Nymi Band MAC address.

State The value named state has a string value.

absent The state is not detected. A Nymi Band that has
not been reported on* should be considered the
same as a Nymi Band that has most recently been
reported absent. A Nymi Band that has an
absent state may be unheard from for a certain
length of time.

Note: * reported on refers to a) The Nymi Band
is connected via BLE and is present. b) It has sent
a BLE advertisement to the endpoint within the
last 30 seconds.

unauthenticated Nymi Band is not authenticated (may or may
not have authenticators enrolled). A Nymi Band
that is not authenticated may be on-body and
unauthenticated or is being charged.

weak Nymi Band is in an authenticated state. The
advertisement authentication code is not verified.

device version
Using the device_version request, you can retrieve hardware and firmware version of the Nymi Band.
The Nymi Band can be in any state when the band label request is sent.

JSON Object Format

Define the presence request JSON object in the following format.

 Request:
 {
 "operation":"get_device_version",
 "payload":{
 "device": "00:00:00:00:00:01"
 },
 "exchange":"ID"
 }

Device Version Response

The).

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 23

Request Operations

Field Definition

fw_version U

hw_version AD.

exchange U

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 24

Response Messages and Notifications

Response Messages and Notifications

By default, a response message contains the operation value, the payload, and the status value of
the request.

• Responses are messages that are generated as a result of the operations previously submitted to
NAPI.

• Notifications are system-generated messages that provide information about state changes in the
environment. Notifications are not generated in response to a request made by a function call.

• When the Presence of a Nymi Band changes, for example, when the Nymi Agent authenticates a
Nymi Band.

• When a Nymi Runtime error occurs.

The update function retrieves the notifications and responses from memory. Before the response appears
in the update queue, the system requires time to process the request and generate the response. Call the
update function on a single thread, to maintain one centralized place that handles all update responses.

IMPORTANT: In large environments, call update frequently to avoid the loss of responses and
notifications.

Response Messages and Notifications

• Responses are messages that are generated as a result of the operations previously submitted to
NAPI.

• Notifications are system-generated messages that provide information about state changes in the
environment. Notifications are not generated in response to a request made by a function call.

• When the Presence of a Nymi Band changes, for example, when the Nymi Agent authenticates a
Nymi Band.

• When a Nymi Runtime error occurs.

The update function retrieves the notifications and responses from memory. Before the response appears
in the update queue, the system requires time to process the request and generate the response. Call the
update function on a single thread, to maintain one centralized place that handles all update responses.

IMPORTANT: In large environments, call update frequently to avoid the loss of responses and
notifications.

Exchange Message

NAPI sends response messages and notifications to a memory buffer. There is only one response queue,
and requests are not tracked against their original threads.

Define an exchange value in the request_obj to match the requests that are sent from various threads to
the responses that are received on the update thread.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 25

Response Messages and Notifications

A response message appears in the following format:

 {
 "operation":"operation_value",
 "payload": {
 "property_name": "property_value",
 "property_name1": "property_value1",
 …
 "property_nameX": "property_valueX"
 }
 "status": 0 or error_code,
 "error": {
 "error_description": "error_description",
 "error_specifics": "specific error description"
 }
 }

Consider the following:

• operation always appears in the response and the value depends on the reason for the response.

• For a request response, the operation_value matches the operation_value in the request.
• For a notification response that is the result of an error, the operation_value is error.

• payload always appears in the response. If the payload does not contain properties or the response
results in an error, the payload will appear empty. For example, "payload": {}.

• status is 0 when the operation is successful and an integer value that is greater than zero when the
operation fails.

• error always appears in the response and the value depends on the reason for the response.

• If the response is the result of a successful request, error is empty. For example, "error": {}.
• If the response is the result of a failed request or error notification, status displays an error

code, and error contains descriptive information about the failure. See Error Handling for more
information.

update function
Use the update function to retrieve responses for requests and system notifications from NAPI.

The declaration for the update function is as follows:

typedef const char* (WINAPI* UPDATE_FUNC_POINTER)(int timeout_ms);
UPDATE_FUNC_POINTER update = NULL;

Where timeout_ms is an integer value that represents the number of milliseconds (ms) that the update
function waits for a response before timing out.

Ensure that you do not call update simultaneously on two threads.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 26

Response Messages and Notifications

Results

The update function returns a pointer to a JSON message as an UTF-8 string. The string has one of the
following values:

• Empty string, when a timeout occurs
• Valid JSON string

initialization error notifications
After initialization, NAPI might disconnect from the Nymi Agent, which results in update retrieving
an error notification similar to the following example.

 {
 "operation": "error",
 "exchange": null,
 "payload": {},
 "status": 4000,
 "error": {
 "error_description": "Nymi Agent missing.",
 "error_specifics":""
 }
 }

When a disconnect occurs, NAPI automatically attempts to reconnect to Nymi Agent. Any requests
that an NEA performs will fail until it retrieves a reconnection notification.

A reconnection notification appears similar to the following:

 {
 "operation": "reconnection",
 "exchange": "null",
 "payload": {},
 "status": 0,
 "error": {}
 }

Presence Notifications

When Nymi API (NAPI) detects a change in Nymi Band presence, NAPI generates a presence
notification.

The update calls that you perform after you perform the init operation retrieve a sequence of presence
notifications, one for each present Nymi Band (if any Nymi Bands are present within range. Presence
updates are non transactional. The system will return any changes to presence).

It is recommended that you develop a method for your application that tracks when the Nymi Bands
come in and out of range.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 27

Response Messages and Notifications

Presence notifications appear in the following format:

 {
 "operation":"presence",
 "exchange":null,
 "status":0,"
 payload":{
 "device": device,
 "proximity":"proximity value",
 "service_request_state":service request state
 "state":state
 },
 "error":{}
 }

where:

• proximity_value: determined by the distance between the Nymi Band and the BLE adapter. The
proximity_value will change when the Nymi Band moves closer or farther from the BLE adapter.
The threshold (distance) for the proximity_value is determined in the nbe.toml file.

Note: To edit the nbe.toml file, refer to Editing the nbe.toml File on page 31.
• state: determined by the state of the Nymi Band; weak, absent, or unauthenticated.
• service request state: a flag that accompanies each presence notification and determines

if there is a message in the Nymi Band that is ready to be downloaded. If the value of
service_request_state is '1', the Nymi Band has a message. If the value is '0', there are no
messages.

Note: If the payload contains only the device, no response is returned for this operation. A notification
is returned, which is not tied to any request and does not contain any values.

Table 5: Proximity values for presence notifications

Proximity
values

Definition Example: Nymi Lock Control Behavior

4 The BLE adapter does not
detect the Nymi Band.

For example, the user may be in another room.

When the user enters the BLE adapter range, the proximity_value
will go from 4 to 3. Nymi Lock Control does not perform any
actions.

When the user leaves the BLE adapter range, the proximity_value
goes from 3 to 4. Nymi Lock Control does not perform any
actions.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 28

Response Messages and Notifications

Proximity
values

Definition Example: Nymi Lock Control Behavior

3 The BLE adapter detects the
presence of the Nymi Band.

For example, the user is in the same room as their user terminal.

When the user moves closer to the BLE adapter, the
proximity_value will go from 3 to 2. Nymi Lock Control does not
perform any actions.

When the user moves further from the BLE adapter, the
proximity_value goes from 2 to 3. Nymi Lock Control locks the
user terminal if it is unlocked.

2 The BLE adapter is close to
the Nymi Band.

For example, the user is near their user terminal.

Nymi Lock Control keeps the user terminal unlocked while the
user remains within this range (proximity_value is 2 or less). While
Nymi Lock Control is enabled, the user may press the Enter key or
the space bar on their keyboard to unlock their user terminal.

When the user moves the Nymi Band closer to the BLE adapter,
the proximity_value goes from 2 to 1. Nymi Lock Control will
allow the user to access their user terminal without entering their
credentials.

When the user moves the Nymi Band further from the BLE
adapter, the proximity_value goes from 1 to 2.

1 The BLE adapter and the
Nymi Band are in very close
range.

For example, the user may be sitting at their user terminal.

When the user moves the Nymi Band closer to the BLE adapter,
the proximity_value goes from 1 to 0. This initiates a tap intent.

When the user moves the Nymi Band away from the BLE adapter,
the proximity_value goes from 0 to 1. This ends a tap intent.

0 The BLE adapter and the
Nymi Band are adjacent
(within 4 inches or 10 cm).

For example, the user places their Nymi Band on top of their BLE
adapter.

A tap intent is in progress and indicates a task.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 29

Response Messages and Notifications

Table 6: State values for presence notifications

State Value Definition

Absent The Nymi Agent cannot communicate with the Nymi Band. This
state also applies when a user wears an unenrolled Nymi Band.

Reasons for Nymi Band absence include:

• Nymi Band has been removed from the body.
• Nymi Band has not communicated with the Nymi Agent for at

least 30 seconds.
• Nymi Band has not been within the range of the BLE Adapter for at

least 30 seconds.

Unauthenticated Nymi Band is enrolled and but not authenticated.

Weak Nymi Band is in an authenticated state.

Bluetooth notifications
Nymi Bluetooth Endpoint is a client service that communicates with the Bluetooth Adapter. Bluetooth
notifications for Bluetooth Adapter status are non-transactional.

The Bluetooth Adapter communicates to the Nymi Band. Each time that a Bluetooth Adapter becomes
available, the update function retrieves a notification in the following format.

 {
 "operation": "ble_ready",
 "exchange": null,
 "status": 0,
 "payload": {},
 "error ": {}
 }

If a Bluetooth Adapter becomes unavailable, the update function retrieves an error notification in the
following format.

 {
 "operation": "error",
 "exchange": null,
 "payload": {},
 "status": "error_code",
 "error": {
 "error_description":"error_description>",
 "error_specifics":"error_specifics"
 }
 }

where error_code is one of the following values: 5000, 5010, 5100.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 30

Response Messages and Notifications

For more information about error codes, see Error Handling.

Intent Notification

An intent occurs when a user taps their authenticated Nymi Band next to an NFC reader or Bluetooth
radio antenna, and is used to signal an intent to take an action. For example, an intent to provide an e-
signature is generated when a user taps their authorized Nymi Band against an NFC reader.

A NES server must be specified in the init message in order for intent notifications to be received.

Intent notifications appear in the following format:

 {
 "operation": "intent",
 "exchange": null,
 "payload": {
 "device": "MAC address",
 "type": "see below",
 },
 "status": 0,
 "error": {}
 }

where device is the Nymi Band device ID.

type is used to identify the manner in which the action was initiated.

type field description

ble A user tapped an authenticated Nymi Band against a
BLE device or is in close proximity to a BLE radio
antenna, such as a BLE adapter or built-in Bluetooth
receiver.

nfc A user tapped an authenticated Nymi Band against an
NFC reader or is in close proximity to read range of the
NFC reader.

Status Codes

A 2201 status code is reported when the NFC reader is unsuccessful at mapping the NFC ID to the
enrolled Nymi Band.

A 2200 status code is reported when a NES communication error (for example, NES is offline) occurs.

Note: The 2201 and 2200 status codes do not contains a device ID in the payload.

Editing the nbe.toml File

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 31

Response Messages and Notifications

A backup configuration file is installed on the user terminal when the Nymi Bluetooth Endpoint
is installed or updated. This file, nbe.default.toml, contains the default values that control BLE tap
behavior with the Nymi Band and BLE adapter. Use the values in the nbe.default.toml file as a template
for the nbe.toml file. These files are located in C:\Nymi\Bluetooth_Endpoint\ .

Note: Nymi Bluetooth Endpoint will only recognize RSSI values in the nbe.toml file. Retain a
backup of a useful configuration by copying the nbe.toml file and renaming it.

Table 7: Default configuration settings for Nymi Lock Control and BLE tap intent

nbe.toml Entry Default Value Description

agent_url "ws://127.0.0.1:9120/
socket/websocket"

(do not change)

Identifies the location of the agent URL. The default
value shown in this table is generated if the agent is
installed locally. If the agent URL is installed centrally
(via remote installation), the hostname of the URL will be
different.

The agent_url must be present when using an
nbe.toml file.

rssi_window_tap 10 This determines the duration the Nymi Band must be
within tap-distance of the BLE radio antenna to complete
a tap.

A larger value increases the duration required to perform
and decrease the sensitivity.

rssi_window_long 50 This determines the frequency that Nymi Bluetooth
Endpoint checks the distance between the BLE radio
antenna and the Nymi Band. Nymi Bluetooth
Endpoint tracks trends in these changes to trigger a
Nymi Lock Control action, such as keep unlocked
when present, lock when away, or unlock
when present.

rssi_tap_threshold 0

(must be 0 or negative)

This determines the range at which a tap event will occur.
A smaller negative value means a closer distance to the
BLE antenna.

BLE tap is disabled by default (value = 0). Enter a
non-zero, negative number to enable BLE tap. Nymi
recommends an RSSI value of -42.

If the Nymi Band maintains a minimum distance specified
by rssi_tap_threshold, for a duration rssi_window_tap, a
BLE tap is performed.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 32

Response Messages and Notifications

nbe.toml Entry Default Value Description

rssi_cutoff_close -70

(must be 0 or negative)

This determines the outer range of the close distance-
threshold (excluding tap distance) for Nymi Lock Control.

Enter 0 to bypass the proximity functionality of Nymi
Lock Control.

If the Nymi Band maintains a close distance to the BLE
radio antenna and the RSSI values measured are within
the rssi_cutoff_close value, Nymi Lock Control keeps the
user terminal unlocked.

If the Nymi Band moves away from the BLE radio
antenna, and the RSSI values measured are on a
decreasing trend and goes from the rssi_cutoff_close
value to the rssi_cutoff_far value, Nymi Lock Control
locks the user terminal.

rssi_cutoff_far -75

(must be negative)

This determines the outer range of the far distance-
threshold (excluding tap distance) for Nymi Lock Control.

If the Nymi Band moves towards the BLE radio antenna,
and the RSSI values measured are on an increasing
trend and goes from the rssi_cutoff_far value to the
rssi_cutoff_close value, Nymi Lock Control unlocks the
user terminal.

1. Make a copy of the C:\Nymi\Bluetooth_Endpoint\nbe.default.toml file, and name the file nbe.toml.

2. Edit the nbe.toml file with a text editor.

3. Edit the RSSI values in the file. Refer to the descriptions in the table above.

4. Save the nbe.toml file.

5. Restart the Nymi Bluetooth Endpoint.

a) Press the Windows key on the keyboard, or click the start button on the toolbar. Enter "Services"
in the search bar. The Services application window appears.

b) Search for Nymi Bluetooth Endpoint in the Services application.
c) Right-click Nymi Bluetooth Endpoint and restart it.

Once restarted, the Nymi Bluetooth Endpoint application will be updated with the edits made
in the nbe.toml file. Updated BLE tap intent and Nymi Lock Control settings will be implemented
on the user terminal. If the nbe.toml file is not present, Nymi Bluetooth Endpoint behaves under
default settings.

assert_identity response
The assert_identity request returns Username and Domain. properties

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 33

Response Messages and Notifications

assert_identity Results

The UserStatus property is an optional property. The UserStatus is stored in the Active Directory (AD).

If the UserStatus option is set in the NES console in the Policies > Active Directory page, the Active
Directory status appears in the assert_identity response. If the option is not set, it does not return in the
response.

The UserStatus option has the following possible values:

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Locked User account is locked. This status can appear with
Active and Password Expired.

PasswordExpired User account has an expired password. This status can
appear with Active and Locked.

The last three properties can be combined into a coma separated list.

By default, NES disables support for user status checks in AD. Contact the NES Administrator to
enable AD user status checking, and optionally the checking interval in the NES Administrator
Console.

A successful assert_identity operation produces a response with the following properties.

 {
 "operation": "assert_identity",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "Username": "Jsmith",
 "Domain": "Corp"
 "UserStatus": "Active"

 },
 "status": "0",
 "error: {}
 }

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 34

Error Handling

Error Handling

The update function retrieves errors in the following scenarios.

• When a request operation fails, the response contains a non-zero "status" and error contains
information about the failure. For example, when the assert_identity request was called with an
incorrect nes_url value.

• When an update receives a notification response from NAPI as the result of a runtime error, the
operation value is "error". For example, when the BLE adapter is removed from the USB port.

Notifications and response messages that result in an error appear in the following format:

 {
 "operation": "operation_value",
 "exchange": "null" or "exchange_value",
 "payload": {}
 "status": status_code,
 "error": {
 "error_description": "general error description",
 "error_specifics": "specific error description"
 }
 }

where:

• operation_value provides the operation value for the response or notification. For a response, the
value is the same value that appeared with the request. For a notification, the value is error.

• payload does not contain any properties.
• exchange contains the user-defined exchange value, as it appeared in the request. If an exchange

value was not specified in the request, the exchange value is null.
• status_code provides the status code that is associated with the error. See the Status codes table for

more information
• error_description provides the description of the error that is associated with the status code.
• error_specifics provides additional information about the source of the error. For example, when a

request specifies invalid parameters.

The following table summarizes the values that can appear in the status_code and error_description.

Status Code
Nymi provides you with status codes that assist you in solving SDK code-related issues and errors.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 35

Error Handling

Table 8: Status codes

Status code Error description

0 Operation completed successfully.

1000 Request made with invalid JSON.

1100 Request other than init sent before initialization.

1110 init request sent when already initialized.

1200 Cannot connect to NES. NES URL not specified in init.

2000 Request made with invalid parameters.

2102 Request made with device that does not exist. This is a
permanent error, retries will fail.

2200 Problem occurred while communicating with NES.

2201 The requested query was not found on NES.

3000 Operation timed out. Retry the operation.

3010 Operation interrupted. For example, when the battery
dies.

3100 Operation made during invalid band state.

4000 Connection to Nymi Agent lost. When you see this
error, requests fail until update retrieves a reconnection
notification.

4010 Request made while disconnected from Nymi
Agent.

5000 Something went wrong with the Bluetooth Adapter.

5010 The Bluegiga BLED112 dongle is missing.

5100 Nymi Bluetooth Endpoint is missing or
stopped.

6000 A temporary, recoverable error that indicates that
the Nymi Band is currently not able to perform the
operation, but the operation might succeed if the NEA
tries the operation again.

7000 Error originating from the Nymi Band. Applies to
device operations only.

8000 init payload requires the token and nes_url properties.

8001 NEA data is corrupt or not accessible.

8002 Missing organization name in the L1 certificate.

8100 init payload requires otp property.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 36

Error Handling

Status code Error description

9000 An error occurred. See error_specifics for more details.

Note: Status codes 1000 and 2000, should be considered the same as they indicate a messaging issue
(for example, invalid JSON).

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 37

Troubleshooting

Troubleshooting

Nymi API writes information to log files that allow you to monitor and troubleshoot the NEA.

For additional assistance, visit the Support page on the Nymi website, or contact your Nymi Solution
Consultant.

The following table summarizes the log files that are available for troubleshooting.

Table 9: Log file locations

Component Log location Files

Nymi API By default, the current working
directory.

nymi_api.log

Nymi Agent C:\Nymi\NymiAgent nymi_agent.log

Nymi Bluetooth
Endpoint

NBE_INSTALL_DIR\logs\

where NBE_INSTALL_DIR is
the path of the Nymi Bluetooth
Endpoint.

nymi_bluetooth_endpoint.log

Enable debug mode
When testing NAPI and builds, set the NYMI_DEBUG environment variable to any value to enable
debug logging, and the restart the Nymi Agent and Nymi Bluetooth Endpoint services.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 38

https://support.nymi.com/hc/en-us/requests/new

Information for C/C++ Developers

Information for C/C++ Developers

This section provides information that is specific to using C/C++ to develop an NEA.

Preparing the C/C++ project to use NAPI
Before you can use NAPI, perform the following steps on the development machine, to load, initialize,
and import the NAPI functions into the NEA project.

1. Create a new C/C++ project in Visual Studio.

2. Add nymi_api.dll to the project.

3. Define the following functions in the header file:

 typedef int (WINAPI* REQUEST_FUNC_POINTER)(const char*);
 typedef const char* (WINAPI* UPDATE_FUNC_POINTER)(int timeout_ms);
 REQUEST_FUNC_POINTER request = NULL;
 UPDATE_FUNC_POINTER update = NULL;

4. Create an init function in a C/C++ file with the following:

 void init() {
 HINSTANCE hDll = LoadLibrary("Path to NAPI DLL folder");
 if (hDll) {
 request = (REQUEST_FUNC_POINTER) GetProcAddress(hDll, "request");
 update = (UPDATE_FUNC_POINTER) GetProcAddress(hDll, "update");
 }
 }

5. Call the init function from your code.

6. Next verify the initialization was successful (request and update are not NULL).

7. Call the request function and init theNymi-enabled Application:

 request ("{\"operation\": \"init\", \"payload\":{\"nea_name\": \"application_name\",
 \"nes_url\": \"https://nes.server.com/NES\",\"token\": \"TokenBearerString\"}}");

Note: If the request function successfully sends a message to NAPI, a value of 0 is returned. When a NAPI
initialization has not occurred, and you send any request other than the init request, the request fails and returns
a value of 1. Use the update function to retrieve details about the request. For more information about how to
use the update function, see the update Function section in this guide.

8. Use the update function to retrieve details about the initialization status. A string is returned to you
with and error or a ble_ready status.
NAPI is now initialized and operations can be performed.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 39

Information for C# Developers

Information for C# Developers

This section provides information that is specific to using C# to develop an NEA.

Preparing the C# project to use NAPI
Before you can use NAPI, perform the following steps on the development machine, to load, initialize,
and import the NAPI functions into the NEA project.

1. Open the NEA project in Visual Studio.

2. Add nymi_api.dll to your C# project and copy the nymi_api.dll file to the working directory.

3. Create a class to wrap the NAPI functions.

4. Define the name of the NAPI library (nymi_api.dll) in your class as follows.

 private const string DllName = "nymi_api.dll";

5. Import the request and update functions from nymi_api.dll into your class as follows.

 [DllImport(DllName, EntryPoint = "request")]
 static extern Int32 request(string message);

 [DllImport(DllName, EntryPoint = "update")]
 static extern IntPtr update(int timeout_ms);

6. Initialize NAPI in your NEA project by calling the request function as follows.

 request ('{"operation": "init", "payload":{"nea_name": "application_name", "nes_url": "https://
nes.server.com/NES", "token": "TokenBearerString"}}')

Note: If the request function successfully sends a message to NAPI, a value of 0 is returned. When a NAPI
initialization has not occurred, and you send any request other than the init request, the request fails and returns
a value of 1. Use the update function to retrieve details about the request. For more information about how to
use the update function, see The update Function.

7. Use the update function to retrieve details about the initialization status.

8. Enter the following lines to import the update function from the nymi_api.dll and to declare the
update function.

 [DllImport(DllName, EntryPoint = "update")]
 static extern IntPtr update(int timeout_ms);

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 40

Information for C# Developers

The update function returns the responses to request operations, presence notifications, and error notifications.

9. Convert the pointer that is returned by the update function to a C# string:

 var p = update(Timeout);
 var s = Marshal.PtrToStringAnsi(p);

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 41

Appendix

Appendix

Review this section for supplementary information about Nymi API C Interface.

Authentication requirements
An NEA and the Nymi Band establish trusted communication by using certificates. The first time that
a user runs the NEA, the NEA retrieves a certificate from NES. The NEA certificate is stored in a
keystore. Access to the keystore, by default, is enabled for all users

The NES Administrator can configure automatic or manual certificate retrieval. When the NES
Administrator configures manual certificate retrieval, to initiate the retrieval process, you must specify a
one-time password (OTP) in the init operation.

Acquire an Authentication Token
The first operation that the NEA must call is an init operation. If the init call results in a status code
8000, the (NEA must make an HTTP request to the NES REST API and acquire a token).

You can access NES by using one of the following endpoints to acquire the initial token:

• Basic Authentication
• Basic Authentication with cookies
• Negotiate

Basic Authentication (https://AS_url/api/BasicLoginWithToken)

This endpoint requires you to pass the user credentials in the authorization header.

A successful call:

• Returns one of the following outputs:

• When Accept Header is set to application/xml or application/shtml+xml, the following xml
output:

 <LoginWithTokenResult xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://
schemas.datacontract.org/2004/07/Providers.Interfaces">
 <Success>true</Success>
 <Token>
 …
 </Token>
 </LoginWithTokenResult>

• When the Accept header is not defined, the following JSON string:

 {"Success"="true", "Token"="<token>"}

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 42

Appendix

• Passes the token in the WwwAuthenticate header.

Basic Authentication with Cookies (https://AS_url/api/BasicLoginWithCookies)

This endpoint requires you to pass the user credentials in the authorization header.

A successful call:

• Returns the following JSON string:

{"Success"="true", Cookies={"cookie1": "value1", "cookie2": "value2"}}

• Pushes the token as a NymiAuth cookie.

Copyright ©2021 Nymi Connected Worker Platform Nymi API C Interface Guide v3.0 43

Copyright ©2021
Nymi Inc. All rights reserved.

Nymi Inc. (Nymi) believes the information in this document is accurate as of its publication date.
The information is subject to change without notice.

The information in this document is provided as-is and Nymi makes no representations or
warranties of any kind. This document does not provide you with any legal rights to any
intellectual property in any Nymi product. You may copy and use this document for your
referential purposes.

This software or hardware is developed for general use in a variety of industries and Nymi
assumes no liability as a result of their use or application.Nymi, Nymi Band, and other trademarks
are the property of Nymi Inc. Other trademarks may be the property of their respective owners.

Published in Canada.
Nymi Inc.
Toronto, Ontario
www.nymi.com

http://www.nymi.com

	Contents
	Preface
	Nymi API for C Interface Overview
	Nymi API for C Interface Architecture
	Development Tools
	Supported Platforms
	Supported NFC Readers
	Nymi API for C Interface Sample Application

	Installing the Nymi API C Interface
	Nymi Component Configuration
	Creating NEAs with Nymi API
	Overview of NAPI message handling
	Call Concurrency
	Request and Response
	Nymi API operations

	Request Operations
	subscribe operation
	init operation
	lookup
	assert_identity
	presence update
	device version

	Response Messages and Notifications
	update function
	initialization error notifications
	Presence Notifications
	Bluetooth notifications
	Intent Notification
	Editing the nbe.toml File
	assert_identity response

	Error Handling
	Status Code

	Troubleshooting
	Enable debug mode

	Information for C/C++ Developers
	Preparing the C/C++ project to use NAPI

	Information for C# Developers
	Preparing the C# project to use NAPI

	Appendix
	Authentication requirements
	Acquire an Authentication Token

