@ nymi’

SDK Developer Guide—
Nymi AP| (Windows)

Nymi Connected Worker Platform 1.14.0
v1.0

2023-10-02

P O A C .o 4

NYMi SDK OVEIVIEW....ceiiiii et e et e et e e e e aaa s 7
OVEIVIEW OF NAP . L.ttt ettt e e s e e e e e e eeeeeeeeees 7

(OF= 1| I @0 o o1 ¥ [=1 o o3 Y A 7

request() TUNCLION. e e e e e e e et e e e e e eeeeannns 7

(U] o0 L= 10T T 11] T £ o TP 9

Response Messages and NOtfiCatioNS............ccovvvviiiiiiii e 9

o g = 1T | Vo T 11

Example: Workflow for Nymi Band Tap........cccovveriiiiiiiieeeicceicee e ee e 13

ST o] o L0 g (=T I = F= 1 (0] 1 0 1T 15

S B S = T = T 1= 15

STz Tga] o1 TSI AN o] o] Lo 1 1o o TSR 15
Configure the Development Terminal.........cccccooiviiiiiiiiiiciiie e 17
Importing the ROOt CA CEItifICALE..........uieiiiiiee e 17
Installing the NYmMi RUNTIME........ooiiiiiie e 19
Preparing the C/C++ project t0 USe NAPL........ooo i 19
Preparing the C# project t0 USE NAPI.......ooo e 20
Creating NEAS With NAPIL.......co e 22
Types Of NYMi BANA TAPS......ccuuiiiiiiiieeieiiiiiie et a e e e e et eeeeeeeeans 22

Tap and Authenticate WOrKFIOW............ooiiiiiiiiiii e 23
Authenticated Tap WOTrKIOW.ccuuiiiiiiiiiii e 25

Acquire an Authentication TOKEN..........coiiiiiiiiiiiiie s 27
Operations and Notifications for Nymi AP Initialization.............ccccveeviiiiiiiiiiiiiiees 28

TR @] oT=] = 4[] o PO PPERTT TP 28
Initialization error NOLIfICALIONS.ciiiiiiiiiieiie e 31

Bluetooth NOTIfICAtIONS.eeiiiiiiiiiiii e 32

INtENt NOTITICATION.ceiiiiiiee e 33

Presence NOIfICAtIONS.uiiiiiiiiiiii e 34

Presence Operation (OptioNal).........cccoeeiiiiiiiiiiii e 34

Operations for Tap and AUhENTICALE.vvvviiiiiiiiiieeeieeeeeeeeeeeee e e eeeees 36
AsSert_identity OPEratiON...........uueueurereeiieiiieireeiirerreereereeererrreerrerrrerrrrrrrrrerrrerreereee 36

Operations and Notifications for Tap and LOOKUP.............coooeeeiiiei e, 38

0 To] U] oI @ o =T = 11 o] o RSP 38

Copyright ©2023 Nymi Connected Worker Platform 1.14.0

SDK Developer Guide—Nymi API (Windows) v1.0 I

Troubleshooting.....ccueei e 41
ST gFoT o1 (= ao [T 01U o [4T Lo [TSP 41

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 i

Preface

Preface

Nymi™ provides periodic revisions to the Nymi Connected Worker Platform. Therefore, some
functionality that is described in this document might not apply to all currently supported

Nymi products. The Connected Worker Platform Release Notes provide the most up to date
information.

Purpose

This document is part of the Connected Worker Platform (CWP) documentation suite.

This document provides information about how to develop Nymi-enabled Applications by using
the Nymi APl (NAP!).

Audience

This guide provides information to Developers.

Revision history

The following table outlines the revision history for this document.

Table 1: Revision history

1.0 October 2, 2023 First release of this document for
the CWP 1.14.0 release.

Related documentation
« Nymi Connected Worker Platform—Overview Guide

This document provides overview information about the Connected Worker Platform (CWP)
solution, such as component overview, deployment options, and supporting documentation
information.

* Nymi Connected Worker Platform—Deployment Guide

This document provides the steps that are required to deploy the Connected Worker
Platform solution.

Separate guides are provided for authentication on iOS and Windows device.
* Nymi Connected Worker Platform—Administration Guide

This document provides information about how to use the NES Administrator Console to
manage the Connected Worker Platform (CWP) system. This document describes how to
set up, use and manage the Nymi Band™, and how to use the Nymi Band Application. This

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi APl (Windows) v1.0 4

Preface

document also provides instructions on deploying the Nymi Band Application and Nymi
Runtime components.

 Nymi SDK for WebSocket Developer's Guide

This document provides information about how to understand and develop Nymi-enabled
Applications (NEA) by utilizing the functionality of the Nymi SDK, over a WebSocket
connection that is managed by a web-based or other application. Separate guides are
provided for Windows and iOS application development.

e Connected Worker Platform with Evidian Installation and Configuration Guide

The Nymi Connected Worker Platform with Evidian Guides provides information about
installing the Evidian components and configuration options based on your deployment.
Separate guides are provided for Wearable, RFID-only, and mixed Wearable and RFID-
only deployments.

* Nymi Connected Worker Platform—Troubleshooting Guide

This document provides information about how to troubleshoot issues and the error
messages that you might experience with the NES Administrator Console, the Nymi
Enterprise Server deployment, the Nymi Band, and the Nymi Band Application.

* Nymi Connected Worker Platform with Evidian Troubleshooting Guide

This document provides overview information about how to troubleshoot issues that you
might experience when using the Nymi solution with Evidian.

« Nymi Connected Worker Platform—FIDO2 Deployment Guide

The Nymi Connected Worker Platform—FIDO2 Deployment Guide provides information
about how to configure Connected Worker Platform and FIDO2 components to allow
authenticated users to use the Nymi Band to perform authentication operations.

* Connected Worker Platform with POMSnet Installation and Configuration Guide

The Nymi Connected Worker Platform—POMSnet Installation and Configuration Guides
provides information about how to configure the Connected Worker Platform and POMSnet
components to allow authenticated users to use the Nymi Band to perform authentication
operations in POMSnet.

* Nymi Band Regulatory Guide

This guide provides regulatory information for the Generation 3 (GEN3) Nymi Band.
e Third-party Licenses

The Nymi Connected Worker Platform—Third Party Licenses Document contains
information about open source applications that are used in Nymi product offerings.

If the Nymi software or hardware does not function as described in this document, you can
submit a support ticket to Nymi, or email support@nymi.com

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi APl (Windows) v1.0 5

https://support.nymi.com/hc/en-us/requests/new
support@nymi.com

Preface

Feedback helps Nymi to improve the accuracy, organization, and overall quality of the
documentation suite. You can submit feedback by using support@nymi.com

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi APl (Windows) v1.0 6

support@nymi.com

Nymi SDK Overview

The Nymi SDK provides Developers with libraries, APls, sample code and documentation to
build a Nymi-enabled Application (NEA).

Nymi SDK delivers the Nymi API(NAPI) through a Windows Dynamically Linkable Library(DLL)
named nymi_api.dll that developers include in a Windows application that supports a locally
linked library.

NAPI makes use of the following components.

request()—Function call that is used to send messages from the NEA to NAPI. NAPI
performs the operation that is contained in the message. NEA supplies the request
message in a memory buffer. Before the call returns, NAPI creates a copy of the message.
response() - NAPI provides the results of the request() operation through a response.
Notifications - System-generated messages that provide information about state changes in
the environment. Notifications are not generated in response to a request().

update()— Function call that an NEA uses to retrieve response() messages and
notifications from NAPI. After the function returns, NAPI expects the NEA to copy the
response message out of the memory address provided by the update() call, before calling
the update() function again.

Call Concurrency

NAPI has two FIFO (First-In, First-Out) message queues.

Device queues—One message queue exists for each Nymi Band. When NAPI receives a
device-related message, NAPI dispatches the message to the appropriate device message
gueue, in the order that the message is received. NAPI might dispatch messages to a
device before dispatching messages that have been queued longer, to another device.
Non-device queue—One global message queue that stores messages that are not related
to a device operation, for example, the response for an init() call. NAPI dispatches non-
device related messages to the queue in the order that the messages are received.

request() function

Request messages are received by NAPI in JSON format as a null-terminated string argument
to requesty().

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi APl (Windows) v1.0 7

Nymi SDK Overview

The declaration for the request() function in C is as follows.

typedef int (WINAPI REQUEST _FUNC_POINTER)(const char*);
REQUEST FUNC_POINTER request = NULL;

The following diagram shows the request() call and message handling workflow for device
operations.

NEA NAPI

Create Request

Ty
. Send Accept & process
Call request() request) request()
@70 = SLUCCESS Feturn code

1 = NEA not initialized, send init()

Figure 1: Request function workflow

1. Create the request in a memory buffer and pass the request to NAPI.
2. NAPI creates a copy of the request message.
3. NAPI initiates the requested operation.

The request() call returns 0 when NAPI accepts the message and returns a 1 when the
NEA has not been initialized. The NEA must run the init operation before NAPI can accept
any messages other than init.

The request message is a null-terminated string containing a JSON object with the following
key-value pairs:

"operation": "operation_name",
"exchange": "exchange_string",
"payload": {
"property_name": "property_value",
"property_namel": "property_valuel"

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi APl (Windows) v1.0 8

Nymi SDK Overview

ic;roperty_namex ": "property_valuex"

where:

» operation_name defines the operation for NAPI to perform. For example, init,
assert_identity, and lookup.

» Exchange_string

NAPI sends response messages and notifications to a memory buffer. There is only one
response queue, and requests are not tracked against their original threads.

Define an exchange value in the request_obj to match the requests that are sent from
various threads to the responses that are received on the update thread.

update() function
Use the update function to retrieve responses for requests and system notifications from NAPI.

The declaration for the update function is as follows:

typedef const char* (WINAPI* UPDATE_FUNC_POINTER)(int timeout_ms);
UPDATE_FUNC_POINTER update = NULL;

Where timeout_ms is an integer value that represents the number of milliseconds (ms) that the
update function waits for a response before timing out.

Ensure that you do not call update simultaneously on two threads.

The update function returns a pointer to a JSON message as an UTF-8 string. The string has
one of the following values:

» Empty string, when a timeout occurs
« Valid JSON string

Response Messages and Notifications

There are two types of responses.

* Responses are messages that are generated as a result of an request operation that was
previously submitted to NAPI. Response messages include the same operation, exchange,
and status values as the original request message.

* Notifications are system-generated messages that provide information about state changes
in the environment. Notifications are not generated in response to a request made by a
function call.

Examples of notifications include:

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi APl (Windows) v1.0 9

Nymi SDK Overview

* When the Presence of a Nymi Band changes, for example, when the Nymi Agent
authenticates a Nymi Band.
« When a Nymi Runtime error occurs.

The update function retrieves the notifications and responses from memory. Before the
response appears in the update queue, the system requires time to process the request and
generate the response. Call the update function on a single thread, to maintain one centralized
place that handles all update responses.

IMPORTANT: In large environments, call updat e() frequently to avoid the loss of responses
and notifications.

A response message appears in the following format:

"operation":"operation_value",
"payload": {
"property_name": "property_value",
"property_namel": "property_valuel",

'p;roperty_namex ": "property_valuex"

"status': 0 or error_code,
"error': {
"error_description”: "error_description",
"error_specifics': "specific error description”
}
}

Consider the following:

» operation always appears in the response and the value depends on the reason for the
response.

» For a request response, the operation_value matches the operation_value in the
request.

« For a notification response that is the result of an error, the operation_value is error.

» payload always appears in the response. If the payload does not contain properties or the
response results in an error, the payload will appear empty. For example, "payload": {}.

» status is 0 when the operation is successful and an integer value that is greater than zero
when the operation fails.

« error always appears in the response and the value depends on the reason for the
response.

» If the response is the result of a successful request, error is empty. For example, "error":
{}.

» If the response is the result of a failed request or error notification, status displays
an error code, and error contains descriptive information about the failure. See Error
Handling for more information.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 10

Nymi SDK Overview

Error Handling

The update function retrieves errors in the following scenarios.
* When a request operation fails:

e response contains a non-zero "status"
e error contains information about the failure.For example, when the assert_identity
request was called with an incorrect nes_url value.

* When an update receives a notification response from NAPI as the result of a runtime error,
the operation value is "error". For example, when the BLE adapter is removed from the USB
port.

Notifications and response messages that result in an error appear in the following format:

{
"operation": "operation_value",
"exchange": "null" or "exchange value",
“payload: {}
"status': status_code,
"error": {
"error_description": "general error description”,
"error_specifics': "specific error description"
}
}
where:

« operation_value provides the operation value for the response or naotification. For a
response, the value is the same value that appeared with the request. For a notification, the
value is error.

» payload does not contain any properties.

» exchange contains the user-defined exchange value, as it appeared in the request. If an
exchange value was not specified in the request, the exchange value is null.

» status_code provides the status code that is associated with the error. See the Status
codes table for more information

« error_description provides the description of the error that is associated with the status
code.

» error_specifics provides additional information about the source of the error. For example,
when a request specifies invalid parameters.

The following table summarizes the values that can appear in the status_code and
error_description.

Status Code

Nymi provides you with status codes that assist you in solving SDK code-related issues and
errors.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 11

Nymi SDK Overview

Status code Error description

0 Applies to all operations to indicate success.

1000 Applies for all operations and indicates that the request operation was made
with invalid JSON.

1100 Applies to any operation that is called before an init request. Indicates that
request other than init request was sent before initialization.

1110 Appears for an init request and indicates that theinit request was sent when
the API has already been successfully initialized.

1200 Appears for an init request, when the NAPI cannot connect to NES, for
example, when the NES URL was not specified in init request.

2000 Appears when a request operation was made with invalid parameters.

2102 Appears when a request and the Nymi Band ID value that is specified for the
device property does not exist. This is a permanent error, retries will fail.

2200 Appears when a lookup and assert_identity request is made but NAPI cannot
communicate with NES value that is specified in nes_url property.

2201 Appears when a intent, lookup, and assert_identity request is made but the
requested query was not found on NES.

3000 Appears for any request operation and indicates that the operation timed out.
Retry the operation.

3010 Appears for any request operation and indicates that the operation was
interrupted. For example, when the battery dies.

3100 Appears for any request operation and indicates that the operation was made
while the Nymi Band was in an invalid state.

4000 Notification to indicate that NAPI cannot connect to Nymi Agent . When you
see this error, requests fail until update retrieves a reconnection notification.

4010 Appears for any request operation and indicates that the operation was made
while NAPI is disconnected from Nymi Agent.

5000 Notification to indicate that NAPI cannot connect to the Bluetooth Adapter.

5010 Notification to indicate that the Bluetooth Adapter is missing.

5100 Notification to indicate that the Nymi Bluetooth Endpoint is missing or stopped.

6000 Appears for any request operation and indicates that a temporary,

recoverable error has been generated by the Nymi Band. The Nymi Band
cannot currently perform the operation, but the operation might succeed if the
NEA tries the operation again.

7000 Appears for any operation and indicates that an error the Nymi Band
generated an error. For example, when emory is full.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 12

Nymi SDK Overview

8000 Appears for an init request when the payload is missing the token and
nes_url properties.

8001 Appears for an init request when the when certificates cannot be stored.

8002 Appears for an init request when the L1 certificate is missing the organization
name.

8100 Appears for an init request when the payload is missing the otp property.

9000 Appears for an request when an error occurred. See the error_specifics
property for more details.

Note: Status codes 1000 and 2000, should be considered the same as they indicate a
messaging issue (for example, invalid JSON).

Example: Workflow for Nymi Band Tap

The following image provides an overview of the calls and interactions between the NEA
and NAPI when a Nymi Band user performs an NFC or BLE tap of the Nymi Band, while
performing an authentication operation in the NEA.

Note: The workflow assumes that the NEA has already called init() and the response
contained a status of 0.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 13

Nymi SDK Overview

E 3 "NFC TAP"
Actor j L

NEA NAPI

operation: assert_identity operation: intent

payload:
.

nes_url": "htfps_uwr_fo_nes”,

payload:
send intenfresponse { .

'y

device: 1'\"_'-.".'ﬁ."36-"|:]'."D

"device": "NymiBandiD", s type: NFC
‘assert_type'": "assert_user" Sigy assg status: 0}

"
o
EQuad; eniy,
t

Ty,
\ Accept and process

assert_idenity request
~— @

operation: [assert_idenity
v

payload:

send assert_[idenity

responge username: usemame

Accept and process user
information. domain: domain

userstatus: sfafus
status: 0}

e-signature
complete

Figure 2: Workflow of operations during a tap
In this diagram, the following activities occur:

1. The Nymi Band user opens the NEA and performs a tap.

2. The update function in the NEA retrieves an intent notification. The payload of the
notification contains the Nymi Band ID.

3. The NEA perform an assert_identity request and the device property in the payload
specifies the Nymi Band ID that was in the intent notification.

4. The update function in the NEA retrieves an assert_identity notification.

« If the the assert_identity request is successful (status is 0), the response contains the
username and domain, and user status (if the Check User Status option is enabled in
NES policy).
» If the Nymi Band is not present or not authenticated the assert_identity request fails and
the response contain a non-zero status value.
5. The NEA provides the appropriate result for the authentication task. For example, the e-
signature completes.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 14

Nymi SDK Overview

The Nymi SDK supports the following platforms.

* Microsoft Windows 10, 64-bit
« Microsoft Windows 7, 32-bit and 64-bit

The SDK package contains the following folders:

e .\nymi-sdk\windows\i686—Contains the NAPI dll file for i686 user terminals.

* .\nymi-sdk\windows\sampleApps—Contains sample Nymi-enabled Applications(NEAS).
* ..\nymi-sdk\windows\x86_64—Contains the NAPI dll file for i686 user terminals.

* ..\nymi-sdk\windows\setup\BleDriver_x64.msi—64-bit Bluegiga driver installation file.

e \nymi-sdk\windows\setup\BleDriver_x86.msi —32-bit Bluegiga driver installation file.

e .\nymi-sdk\windows\setup\NymiRuntime-5.9.1.8.msi—Nymi Runtime MSI installation file.

» \nymi-sdk\windows\setup\Nymi Runtime installer.ver si on.exe —Nymi Runtime installation
file.

The Nymi SDK package includes a sample application that demonstrates some of the key
functionality of the Nymi solution.

The sample application is a simple Javascript application that demonstrates all the basic
functions that are supported by the API and allows a user to see both JSON request and
response examples to help understand how the API works.

The sample application for C++ is located in the ...\nymi-sdk\windows\samplesApps\cpp
\sdkSample\sdkSample folder.

Before you can use the sample application, modify the following content in the sdkSample.cpp
file to reflect the configuration of your environment.

1. For

const char* nes_url ="nes _url";

replace nes_url with https://nes_server/nes_servi ce_nane where:

* nes_server is the Fully Qualified Domain name of the NES host.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 15

Nymi SDK Overview

e nes_servVvi ce_nane is the services mapping name of the NES web application. The
default value is nes.

For example, https://tw-srv1.tw-lab.local/nes

Note: The service mapping name for NES was defined during deployment.
2. For

const char* nes_directory_service_id ="NES _DS";

, replace NES_DS with the service mapping name that you provide in the previous step.
3. For

const char* username = "username_goes_here";

, replace username_goes_here with a username of an user that is valid in AD.
4. For

const char* password = "password_goes_here";

, replace password_goes_here with the password of a user that is valid in AD.
5. For

const char* nea_name ="NEA_name_goes_here";

, replace NEA_name_goes_here with a arbitrary name to provide the NEA.

The sample application for C# is located in the ..\nymi-sdk\windows\csharp\sdkSample
\SDK_Sampile folder. The application prompts you for the configuration parameters that are
unigue to your environment.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 16

Configure the Development Terminal

Configure the Development
Terminal

Review this section for information about how to prepare the development terminal.

Importing the Root CA certificate

Perform the following steps only if the Root CA issuing the NES TLS server certificate is not a
Trusted Root CA (for example, if a self-signed TLS server certificate is used for NES). Install
the Root CA on each user terminal to support the establishment of a connection with the NES
host.

About this task

While logged into the user terminal as a local administrator, use the cer t | mapplication to
import the root CA certificate into the Trusted Root Certification Authorities store. For example,
on Windows 10, perform the following steps:

Procedure

1. InControl Panel, select Manage Conputer Certificates.

2. Inthe cer t | mwindow, right-click Trust ed Root Certification Authorities, and
then select Al I Tasks > I nport.
The following figure shows the cer t | mwindow.

E certlm - [Certificates - Local Computer\Trusted Root Certification Authorities] - a X

File Action View Help

@ 7FE B 6= HEE

GV Certificates - Local Computer ~ || Object Type
| Personal _ Certificates
v | Trusted Root Certification Authoritiec
_| Certificates Find Certificates..
_| Enterprise Trust) -
_| Intermediate Certification Authc GllEEEs . Rndaricziass
7| Trusted Publishers View > Import...
_ Untrusted Certificates T
| Third-Party Root Certification A Refresh
1 Trusted People Export List...

_ Client Authentication lssuers

| Preview Build Roots)2

=T

Figure 3: certlm application on Windows 10
3. OntheWel cone to the Certificate Inport W zard screen, click Next .
The following figure shows the W&l come to the Certificate Inmport W zard screen.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 17

Configure the Development Terminal

=+ Certificate Import Wizard

Welcome to the Certificate Import Wizard

This wizard helps you copy certificates, certificate trust lists, and certificate revocation
lists from your disk to a certificate store,

A certificate, which is issued by a certification authority, is a confirmation of your identity
and contains information used to protect data or to establish secure network
connections. A certificate store is the system area where certificates are kept.

Store Location

To continue, dick Next.

Figure 4: Welcome to the Certificate Import Wizard screen

4. Onthe File to | nport screen, click Br owse, navigate to the folder that contains the
root certificate file, select the file, and then click Open.

5. OntheFile to I nport screen, click Next .
The following figure shows the Fi | e t o | nport screen.

€ L Certificate Import Wizard

File to Import
Specify the file you want to import.

File name:
C:\Users\ddunn'Downloads\Local Lab Root CA.cer Browse. ..

Mote: More than one certificate can be stored in a single file in the following formats:
Personal Infarmation Exchange- PKCS #12 {PFX,.P13)
Cryptographic Message Syntax Standard- PKCS #7 Certificates (P7B)

Microsoft Serialised Certificate Store (.55T)

Mext Cancel

Figure 5: File to Import screen

6. Onthe Certificate Store screen, acceptthe default value Pl ace al |
certificates in the foll owi ng store with the value Tr ust ed Root
Certification Authorities,andthen click Next .

7. Onthe Conpl eting the Certificate Inport W zard screen, click Fi ni sh.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 18

Configure the Development Terminal

Perform the following steps to install Nymi Runtime on the development machine.

1. Extract the Nymi SDK package to the development machine.
2. with c#, C, or C++, copy the nymi_api.dll file from the ..\nymi-sdk\windows\x86_64 directory
to the Visual Studio working directory.

Note: In a remote environment where the NEA is running on a different machine than the runtime,
Visual c++ 2013 and 2015 redistributables must be installed.

3. From the ..\nymi-sdk\windows\setup folder, perform one of the following actions to install
the Nymi Runtime silently.run the Nymi Runtime Installer 5.11.x.y.exe file.
* For a decentralized Nymi Agent configuration,type .\Nymi Runtime Installer 5.11.X. y. exe" -
q

Where X. Y is the version number.
» For a centralized Nymi Agent configuration,type the following command to install the Nymi
Bluetooth Endpoint only. ".\Nymi Runtime Installer 5.11.x. y. exe" -q InstallAgent=0

Where X. Y is the version number.

Before you can use NAPI, perform the following steps on the development machine, to load,
initialize, and import the NAPI functions into the NEA project.

1. Create a new C/C++ project in Visual Studio.
2. Add nymi_api.dll to the project.
3. Define the following functions in the header file:

typedef int (WINAPI* REQUEST_FUNC_POINTER)(const char*);

typedef const char* (WINAPI* UPDATE_FUNC_POINTER)(int timeout_ms);
REQUEST _FUNC_POINTER request = NULL;

UPDATE_FUNC_POINTER update = NULL;

4. Create an init function in a C/C++ file with the following:

void init() {

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 19

Configure the Development Terminal

HINSTANCE hDII = LoadLibrary("Path to NAPI DLL folder");

if (hDII) {
request = (REQUEST_FUNC_POINTER) GetProcAddress(hDll, "request");
update = (UPDATE_FUNC_POINTER) GetProcAddress(hDll, "update");

5. Call the init function from your code.
6. Next verify the initialization was successful (request and update are not NULL).
7. Call the request function and init the Nymi-enabled Application:

request ("{\"operation\": \"init\", \"payload\":{\"nea_name\": \"application_name\",
\"nes_url\": \"https://nes.server.com/NES\" \"token\": \" TokenBearerString\"} }");

Note: If the request function successfully sends a message to NAPI, a value of 0 is returned. When
a NAPI initialization has not occurred, and you send any request other than the init request, the
request fails and returns a value of 1. Use the update function to retrieve details about the request.
For more information about how to use the update function, see the update Function section in this
guide.

8. Use the update function to retrieve details about the initialization status. A string is returned
to you with and error or a bl e_r eady status.
NAPI is now initialized and operations can be performed.

Before you can use NAPI, perform the following steps on the development machine, to load,
initialize, and import the NAPI functions into the NEA project.

Open the NEA project in Visual Studio.

Add nymi_api.dll to your C# project and copy the nymi_api.dll file to the working directory.
Create a class to wrap the NAPI functions.

Define the name of the NAPI library (nymi_api.dll) in your class as follows.

P ow bRk

private const string DIIName = "nymi_api.dll";
5. Import the request and update functions from nymi_api.dll into your class as follows.

[DllImport(DIIName, EntryPoint = "request")]
static extern Int32 request(string message);

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 20

Configure the Development Terminal

[DllImport(DIIName, EntryPoint = "update")]
static extern IntPtr update(int timeout_ms);

6. Initialize NAPI in your NEA project by calling the request function as follows.

request (‘{"operation": "init", "payload":{"nea_name": "application_name", "nes_url": "https://
nes.server.com/NES', "token": "TokenBearerString'} } ")

Note: If the request function successfully sends a message to NAPI, a value of 0 is returned. When
a NAPI initialization has not occurred, and you send any request other than the init request, the
request fails and returns a value of 1. Use the update function to retrieve details about the request.
For more information about how to use the update function, see The update Function.

7. Use the update function to retrieve details about the initialization status.

8. Enter the following lines to import the update function from the nymi_api.dll and to declare
the update function.

[DllImport(DlIName, EntryPoint = “update")]
static extern IntPtr update(int timeout_ms);

The update function returns the responses to request operations, presence notifications, and error
notifications.

9. Convert the pointer that is returned by the update function to a C# string:

var p = update(Timeout);
var s= Marshal .PtrToStringAnsi(p);

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 21

Creating NEAs with NAPI

Creating NEAs with NAPI

Customer and partner developers can use the NAPI to develop Nymi-enabled Application
(NEAS) in programming languages, such as Java or C#. The API is written in JSON. This
chapter provides information about the supported operations.

To deploy an NEA, developers must install the Nymi Runtime on each terminal where the NEA
runs. The Nymi Runtime includes the following components: Nymi Bluetooth Endpoint, and Nymi
Agent.

Note: In this document, the use of device refers to the Nymi Band.

Types of Nymi Band Taps

To perform an authentication task, a Nymi Band user taps their authenticated Nymi Band on
either an NFC reader(NFC tap) or the Bluetooth adapter (BLE tap) that is connected to a user
terminal.

The Nymi SDK allows an Nymi-enabled Application (NEA) to authenticate a user. A user
provides their authentication intention (intent) when they perform a Nymi Band tap.

As a developer, you must decide how the NEA handles a Nymi Band tap. Nymi SDK provides
you with three design options.

Table 3: Design Options for Nymi Band Taps

Tap and When a user performs an NFC tap or Tap and Authenticate offers the best
Authenticate a BLE tap, the Nymi SDK initiates the security, with a slight increase in response
authentication of the Nymi Band by time.

using a cryptographic protocol over a

Bluetooth connection. Nymi recommends that you use this design

when Nymi Band users access the NEA
from a Windows user terminal.

Authenticated Tap When a user performs a BLE tap, Authenticated Tap offers very good security
NES authenticates the Nymi Band by and offers a very fast response time. Nymi
verifying cryptographic information recommends this option when the user
that the Nymi Band transmits through terminal establishes Bluetooth connections
the BLE tap. NES does not need to slowly, for example, when the Nymi Band
establish a Bluetooth connection to user taps on the Bluetooth reader of an
perform the cryptographic operation iOS device.

with the Nymi Band.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 22

Creating NEAs with NAPI

Tapand Lookup ~ When a user performs a tap, the NEA
performs a lookup operation to identity
the Nymi Band user. The Nymi Band
and the Nymi SDK do not exchange
cryptographic information, however;
the Nymi Band still needs to have
authenticated the user by using their
fingerprint or corporate credentials
authentication.

This design is a legacy option. Nymi
recommends that you update your NEA
to use either Tap and Authenticate or
Authenticated Tap.

Tap and Authenticate Workflow

When a Nymi Band user taps and the Nymi-enabled Application(NEA) handles Nymi Band
taps with an Tap and Authenticate design, a series of events occur before the completion of the

authentication task.

The following figure provides an example of the Tap and Authenticate worflow.

Copyright ©2023
SDK Developer Guide—Nymi API (Windows) v1.0

Nymi Connected Worker Platform 1.14.0

23

Creating NEAs with NAPI

Connect to
WebSocket

Wait for intent
notification

Call presence
operation for Nymi
Band

Nymi Band
present

Call assert_identity
for Nymi Band

Assert
Success

Returns Username
and Domain

Auth Success

Figure 6: Tap and Authenticate Workflow

The first step is to wait for an intent notification. The intent operation tells the application that a
user has placed their Nymi Band on an NFC reader that is connected to the workstation. The
intent operation returns a device ID, which is the standard identifier of a Nymi Band in the CWP
solution.

After the intent notification returns a device ID, the application ensures that the device is
present. This action is performed in one of the following ways:

« Passively as NAPI continuously sends notifications about present Nymi Bands.

» Actively by requesting a presence operation with the desired device ID, and then waiting for
a response.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 24

Creating NEAs with NAPI

For passive notifications, since NAPI sends notifications for the full list of Nymi Band present
at start-up, an application can track all present bands and then check its list of current Nymi
Bands. After presence is established, the application can request an assert_identity operation
for the Nymi Band. The assert_identity operation uses a bi-directional challenge-response to
establish a secure channel between the Nymi Agent and the requested Nymi Band. When
the action results in the establishment of the secure channel, the assert_identity verifies

the authentication state of the Nymi Band. When the assert_identity operation completes
successfully the operation passes the username and domain of the associated user back to
the application, and the application can continue with an absolute assurance that the Nymi
Band is present and authenticated to the correct user.

Note: The Nymi Band exchanges data over Bluetooth Low Energy(BLE) and the exchange
consists of several cryptographic operations. As a result, the assert_identity operation can take
up to two seconds to complete.

Continuous monitoring of the WebSocket to watch for presence notifications indicates to an
application when a user has authenticated, de-authenticated (by removing their Nymi Band),
or when the user leaves a physical area. The presence notifications always returns one of the
following statuses for a single Nymi Band.

« Weak—The Nymi Band is present. A strong presence is represented by the successful
return of an assert_identity operation.

e Absent—The Nymi Band is not present.
« Unauthenticated—The Nymi Band is not authenticated.

Note: Ensure that the loss of presence triggers your application to log out, lock, or remove
user access to functionality.

Authenticated Tap Workflow

When a Nymi Band user taps and the Nymi-enabled Application(NEA) handles Nymi Band
taps with an Authenticated Tap design, a series of events occur that result in the NEA (web
application) receiving a notification.

The notification indicates to the web application that:

» A user wearing an authenticated Nymi Band wants to perform an authentication task.
* NES has authenticated the Nymi Band over Bluetooth.

The following figure summarizes the workflow that the solution follows for an Authenticated Tap.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 25

Creating NEAs with NAPI

1. Open Web App -

e User-Initiated

Web App

=)

—’:

2. Connect through 5 :I
websocket 1

E— 3 subscribe_endpoinl-}i
H 4 BLE_ready H
H < notification |

o

Inttialzation

|
5 Advertising packet
|

b4

e Event]
i 1 6 Presence |
E notification
i 7. Request
! subscribe_idenity

1 1
H ' &. Responze [
H subscribe_identity !
i

1

i
1
i 1.Tap Nymi Band s

=)

Create e-signature

A4

!
>

2 POST H
——— Verify_PAC—»|

H 3. Verify
:D advert_pkt
1
1

4.200 0K

< (domain, user, — |
user stafus, jwi)

! 5. asseri_identity
it nofification

i (domain, user,

H user status, jwt)

Figure 7: Workflow for Authenticated Taps

The workflow includes two distinct phases. Each phase includes user-initiated and application-

initiated actions.

Phase 1—Initialize NEA

This phase occurs each time a user connects to the web application and results in the
establishment of connectivity between the web application and the Nymi components.

1. User opens the NEA on their iOS device.

2. The NEA establishes a WebSocket connection to the Nymi Agent.

3. The NEA sends a subscribe_endpoint request to the Nymi Agent. The subscribe_endpoint
request identifies the Nymi Bluetooth Endpoint that the web application communicates with.

4. The Nymi Agent sends a ble_ready notification to the web application.

Copyright ©2023

SDK Developer Guide—Nymi API (Windows) v1.0

Nymi Connected Worker Platform 1.14.0
26

Creating NEAs with NAPI

5. The Nymi Bluetooth Endpoint receives advertisements from authenticated Nymi Bands that
are near the Bluetooth adapter. Nymi Bluetooth Endpoint generates presence events for
each Nymi Band, and sends them to Nymi Agent.

6. The Nymi Agent starts to send a presence notifications for each authenticated Nymi Band
that is near the user terminal to the web application.

7. Web application sends a subscribe_identity request to the Nymi Agent.

8. Nymi Agent responds to the request. Nymi Agent returns a success response.

This phase occurs each time a user performs an e-signature with the Nymi Band and results in
the completion of an e-signature with the tap of a Nymi Band.

1. From a window within the web application the user performs an action that requires an e-
signature, and then the user taps the Nymi Band on the Bluetooth adapter. Nymi Bluetooth
Endpoint detects the tap and notifies to the Nymi Agent.

Nymi Agent request that NES verify the advertising packet of the Nymi Band.

NES verifies the packet and contacts Active Directory to confirm the user credentials.

NES returns the response to the Nymi Agent.

Nymi Agent sends an assert_identity notification to the web application. The web application
reviews the notification and based on the information, completes the e-signature or does
not complete the e-signature.

aprwn

The first operation that the NEA must call is an init operation with an authentication token, that
you retrieve from NES.

You can access NES by using one of the following endpoints to acquire the initial token:

* Basic Authentication
+ Basic Authentication with cookies

This endpoint requires you to pass the user credentials in the authorization header.
A successful call performs the following two actions:
1. Returns one of the following outputs:

* When Accept Header is set to application/xml or application/shtml+xml, the following xml
output:

<L oginWithTokenResult xmIns:i="http://www.w3.0rg/2001/X ML Schema-instance" xmins="http://
schemas.datacontract.org/2004/07/Providers.I nterfaces'>

<Success>true</Success>

<Token>

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 27

Creating NEAs with NAPI

<[Token>
</LoginWithTokenResult>

* When the Accept header is not defined, the following JSON string:

{"Success'="true", "Token"="<token>"}

2. Passes the token in the WwwAuthenticate header.

This endpoint requires you to pass the user credentials in the authorization header.
A successful call:

* Returns the following JSON string:

{"Success'="true", Cookies={"cookiel": "valuel", "cookie2": "value2"}}

* Pushes the token as a NymiAuth cookie.

This endpoint does not require you to pass user credentials in the authorization header, but
requires each user terminal and NES to access the same AD for centralized authentication.
The method that you use is specific to the language that you use to develop the NEA.

This section summarizes the operations and notifications that initialize Nymi APl and allow the
Nymi-enabled Application(NEA) to handle Nymi Band taps.

Init Operation

The init operation initializes NAPI, configures communication channels between components,
and performs certificate enroliment when required. Ensure that your NEA makes init the first
requested operation. When the init operation succeeds, it is not necessary to call init again.

There are two ways to call the init operation when initializing with certificate enroliment.

* nea_name
e nea_name + nes_url + token

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 28

Creating NEAs with NAPI

Define the JSON payload for the init in the following format.

{

"operation": "init",

"exchange": "exchange value',

"payload": {
"nea_name": "name_of_application",
"nes_url": "https_url_to_nes",
"token": "token",
"log_path": "path",
"bypass_nes_|ookup": true/false,
"url": "ws://agent_server:9120/socket/websocket"

where:

e name_of application is the name that you assign to the NEA and is always required.

» nes_url field is the URL for the NES website application. You require this parameter in the
first init call. The format of the URL is https_url_to_nes

» tokenis an HTTP Bearer token that NES uses to authenticate the NEA user or computer.
This parameter is optional. If you will use this parameter, you must specify it in the first init
call. Obtain the token as described in the Appendix.

» path is the log file path on the development machine. If you do not specify the path
property, the NEA uses the default log path, which is your current working directory.

* bypass_nes_lookup determines if NAPI contacts NES to retrieve the device ID of the Nymi
Bandwhen a user performs an NFC tap. Set this value to true only when you have an
alternative method to retrieve the Nymi Band device ID.

» url is required when you are using a centralized Nymi Agent, and agent_server specifies the
hostname of the machine that runs the Nymi Agent service.

Example

The following code block provides an example of a JSON object that instructs
NAPI to initialize the NEA.

{
"operation": "init",
"exchange": "rAndOm_|deNtifyiNG_StrING_1211",
"payload": {
"nea_name": "NEAS",
"nes_url": "https://server-2.nymi.lab/nes’,
"token": "eyJVc2VyVGOrZW5TdHJIpbmciOiIMbk..",
"url": "ws://agent.nymi.com:9120/socket/websocket"
}
}

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 29

Creating NEAs with NAPI

A successful init operation produces a response with the following properties.

"operation": "init",
"exchange": "rAndOm_|deNtifyiNG_StrING_1211",

"payload": {}
"status": O,
"error": {}

An unsuccessful init operation generates a hon-zero status.

The following table summarizes the status codes that can appear, and the payload properties
that you require for a subsequent init call.

Status code Payload properties for subsequent init call

0 Operation completed successfully with the defined
payload. The system is initialized. Additional calls
to init are not required.

11xx Operation completed successfully with the defined
payload. When a request other than init is sent
before the system is initialized, the system returns
a status code 1100. If the system was already
initialized, but a request for init was sent, the
system returns a status code 1110.

8000 Payload is missing the token and nes_url
property definitions. Call init again and include the
token and nes_url properties, in addition to the
nea_name.

9000 There was an issue with the certificate from NES.
Contact the NES Administrator for assistance.

The following flowchart provides an overview of how you can use NAPI responses to an init
call, to determine the properties that you need to include in the payload file.

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 30

NEA

Creating NEAs with NAPI

NAPI

FAIL *

operation: init

[p-EIF-EII'I'IETE"EI"IEEI_F‘EI'I"E]

token
nes_url

Send
request

@*—Y = 5uUCCess—

Y = init requires token and nes_url,

update request{) and retry

@—7’1’ = SUCCESS

Response=07

H

< Response=80007%

esponse=9000%

Accept & process

request

response to update()

Figure 8: NAPI response calls to init

Initialization error notifications

After initialization of the API, and i ni t () request results in a status of 0, NAPI might

disconnect from the Nymi Agent, which results in update() retrieving an error notification similar
to the following example.

Copyright ©2023
SDK Developer Guide—Nymi API (Windows) v1.0

Nymi Connected Worker Platform 1.14.0

31

Creating NEAs with NAPI

"operation": "error”,
"exchange": null,

"payload”: {},

"status': 4000,

"error": {
"error_description™: "Nymi Agent missing.",
"error_specifics":""

}
}

When a disconnect occurs, NAPI automatically attempts to reconnect to Nymi Agent. Any
requests that an NEA performs fails until the NEA retrieves a reconnection notification.

A reconnection natification with a status of zero. The following provides an example of a
successful reconnection notification:

{

"operation": "reconnection",
"exchange": "null",

"pay|Oad"Z {} ,
"status": O,
"error": {}

Bluetooth Notifications

Nymi Bluetooth Endpoint is a client service that communicates with the Bluetooth Adapter.
Bluetooth notifications for Bluetooth Adapter status are non-transactional.

The Bluetooth Adapter communicates to the Nymi Band. Each time that a Bluetooth Adapter
becomes available, the update function retrieves a notification in the following format.

"operation": "ble_ready",
"exchange": null,
"status": O,

"payload": {},

"error ": {}

If a Bluetooth Adapter becomes unavailable, the update function retrieves an error notification
in the following format.

"operation": “error”,

"exchange": null,

"payload”: {},

"status': "error_code",

"error": {
"error_description”:"error_description>",
"error_specifics':"error_specifics'

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 32

Creating NEAs with NAPI

where error_code is one of the following values: 5000, 5010, 5100.

For more information about error codes, see Error Handling.

Intent Notification

When a user taps their authenticated Nymi Band on or near a bluetooth radio antenna or
NFC reader, the action represents an intent to perform an authentication task, such as an e-
signature.

NAPI sends an intent notification to the Nymi-enabled Application(NEA). The contents of the
notification payload differ depending on how you defined the bypass_nes_lookup parameter in
the init operation.

* bypass_nes_lookup=False—NAPI initiates a lookup request to NES to determine the
device ID (MAC address) that is associated with the NfcUID retrieved from the Nymi Band.
The notification payload includes the MAC address (device ID) of the Nymi Band.

{

"operation": "intent",
"exchange": null,
"payload": {

"device": "NymiBandID",
Iltypell : " rch:ll ,

"status': 0,

"error": {}

}

where:

* NymiBandID is the device ID (MAC address) that is associated with the NfcUID retrieved
from the Nymi Band.
» type identifies the user tapped their authenticated Nymi Band against an NFC reader or
is in close proximity to read range of the NFC reader.
* bypass_nes_lookup=True—NAPI does not initiate a lookup request to determine the device
ID (MAC address) that is associated with the NfcUID that NAPI retrieved from the Nymi
Band. The natification payload includes the NfcUID of the Nymi Band.

{
"operation": "intent",
"exchange": null,
"payload": {
"nfc_uid": "NfcUID",
"type": "nfc|ble",

"étatuS': 0,
"error": {}

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 33

Creating NEAs with NAPI

where:

« NfcUID-Displays the Nfc UID that NAPI retrieves from the Nymi Band.
* type identifies the tap protocol.

» ble—The user tapped their authenticated Nymi Band against a BLE device or is in
close proximity to a BLE radio antenna, such as a BLE adapter.

» nfc—The user tapped their authenticated Nymi Band against an NFC reader or is in
close proximity to read range of the NFC reader.

A 2201 status code is reported when the NFC reader is unsuccessful at mapping the Nfc UID
to the enrolled Nymi Band.

A 2200 status code is reported when a NES communication error (for example, NES is offline)
occurs.

Note: The 2201 and 2200 status codes do not contain a NymiBandID in the payload.

Presence Notifications

When NAPI detects a change in Nymi Band presence, NAPI generates a presence notification.

After init(), the update function retrieves a sequence of presence notifications, one for each
Nymi Band that is present within range of the Bluetooth adapter. Presence updates are non-
transactional. The system will return any changes to presence.

It is recommended that you develop a method for your application that tracks when the Nymi
Bands come in and out of range.

Presence notifications appear in the same format as the presence operation.

Presence Operation (Optional)

Using the presence request, you can retrieve the current state of the Nymi Band. Presence
requests are non transactional. The presence request has no response and a presence
response is not tied to a specific request.

When a presence request is sent, the system will replay the last presence update received.
When a presence state changes you will receive automatic notifications. For information about
these naotifications, see Presence naotifications.

Presence is relative to an endpoint (the response indicates if the Nymi Band is in range of the
NEA). A Nymi Band can be present on some endpoints, but absent on others. If the presence
state is false the presence state returns as absent .

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 34

Creating NEAs with NAPI

Define the presence request JSON object in the following format.

"operation": "presence”,
"exchange’:"exchange_val ue",
payload":{
"device’: "Nym Bandl| D,
"proximity" : "proximity value",

"service_request_state" : "service request state”,
"state" : "state"
I
}

where:

« NymiBandID: Is the Nymi Band MAC address.

« proximity_value: Is determined by the distance between the Nymi Band and the BLE
adapter. The proximity_value will change when the Nymi Band moves closer or farther
from the BLE adapter. The threshold (distance) for the proximity value is determined in the
nbe.toml file.

Note: To edit the nbe.toml file, refer to Editing the nbe.toml File.
» state: Is determined by the state of the Nymi Band; weak, absent, or unauthenticated. The
following table describes the state values in more detalil:

State Value Definition

Absent The Nymi Agent cannot communicate with the Nymi Band.
This state also applies when a user wears an unenrolled Nymi
Band.

Reasons for Nymi Band absence include:

* Nymi Band has been removed from the body.

» Nymi Band has not communicated with the Nymi Agent for
at least 30 seconds.

* Nymi Band has not been within the range of the BLE
Adapter for at least 30 seconds.

Unauthenticated Nymi Band is enrolled and but not authenticated.

Weak Nymi Band is in an authenticated state.

» service request state: Is a flag that accompanies each presence notification and determines
if there is a message in the Nymi Band that is ready to be downloaded. If the value of
servi ce_request _st at e is not zero, the Nymi Band has service level messages. If the
value is '0', there are no messages

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 35

Creating NEAs with NAPI

When a user performs Nymi Band tap, Nymi API provides the Nymi-enabled Application(NEA)
with an i nt ent notification and the NEA uses the assert _i denti ty operation to verify that
the Nymi Band user that taps on Nymi Band .

Assert_identity Operation

The assert_identity operation provides an NEA with the ability to confirm that a Nymi Band that
is assigned to a specific user is authenticated and within Bluetooth range.

The assert_identity operation completes a cryptographic handshake with the Nymi Band and
verifies user/band identity.

Note: The Nymi Band must be in an authenticated state when you call the assert_identity
operation.

Define the assert_identity JSON object in the following format.

"operation": "assert_identity",
"exchange": "exchange value",
"payload": {
"nes_url": "https_url_to_nes",
"device": "NymiBandID",
"assert_type": "assert_user"

where:

» nes_url field is optional. If not provided, the operation uses the nes_url value that you
specified in the Nymi Agent toml file.

« NymiBandID is the Nymi Band (or device) ID value that is returned in the lookup result.

Example

The following code block provides an example of a JSON object that instructs
NAPI to assert the identity of the user with device ID C2:FA:D7:F0:D7:96.

{
"operation": "assert_identity",
"exchange": "rAndOm_IdeNtifyiNG_StrING_5555",
"payload": {
"nes_url": "http://nes.nymi.com/nes",
"device": "C2:FA:D7:F0:D7:96",
"assert_type": " assert_user "

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 36

Creating NEAs with NAPI

Assert_identity response
The assert_identity request returns Username and Domain. properties

The UserStatus property is an optional property. The UserStatus is stored in the Active
Directory (AD).

If the UserStatus option is set in the NES console in the Policies > Active Directory page, the
Active Directory status appears in the assert_identity response. If the option is not set, it does
not return in the response.

The UserStatus option has the following possible values:

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Active|Locked User account is locked. This status can appear

with Password Expired.

Active|PasswordExpired User account has an expired password. This
status can appear with Locked.

The last three properties can be combined into a comma separated list.

By default, NES disables support for user status checks in AD. Contact the NES Administrator
to enable AD user status checking, and optionally the checking interval in the NES
Administrator Console.

A successful assert_identity operation produces a response with the following properties.

{

"operation": "assert_identity",
"exchange":"rAndOm_ldeNtifyiNG_StrING_5555",
"payload": {

"Username": "Jsmith",

"Domain": "Corp",

"UserStatus': "Active",

"jwt": "json web token"

"status": "0,
"error: {}

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 37

Creating NEAs with NAPI

Operations and Notifications for Tap and
Lookup

When a user performs Nymi Band tap, Nymi API provides the Nymi-enabled Application(NEA)
with an i nt ent notification and the NEA uses the assert i dentity and | ookup
operations verify the Nymi Band user that taps on Nymi Band .

Lookup Operation

Use the lookup operation to determine the following values:
» Device ID (MAC address) of the Nymi Band.

Note: An intent notification includes the device ID or you can retrieve the device ID of a
Nymi Band from NES by using the lookup operation.

* NfcUID of the Nymi Band.

» Domain and name of the user.

» User status in Active Directory (AD). The AD status for a user appears in the response
when user status check is enabled in NES. The following table summarizes the possible
user statuses.

Table 6: AD user statuses

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Active | Locked User account is locked. This status can appear

with Active and Password Expired.

Active | PasswordExpired User account has an expired password. This
status can appear with Active and Locked.

By default, NES is not configured to perform user status checks in AD. Contact the NES
Administrator to enable AD user status checking, and optionally the checking interval in the
NES Administrator Console.

JSON Object Format

Define the payload JSON object for the lookup command in the following format.

{
"operation": "lookup",
"exchange": "exchange value',

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 38

Creating NEAs with NAPI

"payload": {
"nes_url": "https_url_to_nes",
"query": "query_JSON",
"lookup_keys': "key JSON*

where:

nes_url the NES URL.

guery field is a JSON object that defines the values that are passed during the request
to retrieve the response. Acceptable values include NfcUID, Domain and Username, and
NymiBandID.

Note: The property names Domain and Username are case-sensitive.

lookup_keys field is a JSON array that contains a list of values that you want to appear in
the response. Supported values include NfcUID, Domain and Username, NymiBandID, and
UserStatus.

Example 1

The following code block provides an example of a JISON object that instructs
NAPI to provide the NfcUID of a device and the user status for a user named
JSmith in the MyCorpDomain domain.

{

"operation": "lookup",

"exchange": "rAndOm_|deNtifyiNG_StrING_1218",

"payload": {

"nes_url": "https://nes.nymi.com/nes/",

“query”: { .
"Domain":"MyCorpDomain”,
"Username”: "JSmith"

}
"lookup_keys": ["NfcUID", "UserStatus']
}

A successful lookup operation produces a response with the following properties.

In this example, the check user status in AD option is enabled in NES, as a result, the
response includes the UserStatus property.

{
"operation": "lookup",
"exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
"payload": {
"lookup_values":{"NfcUID": "1234xyz", "UserStatus":"Active|PasswordExpired"} ,
e
Copyright ©2023 Nymi Connected Worker Platform 1.14.0

SDK Developer Guide—Nymi API (Windows) v1.0 39

Creating NEAs with NAPI

"status": "0",
"error: {}

Example 2

The following code block provides an example of a JSON object that instructs
NAPI to provide the NfcUID of a device with Nymi Band (or device) ID
"C2:FA:D7:FO:D7:96".

"operation": "lookup",
"exchange": "rAndOm_|deNtifyiNG_StrING_1218",
"payload": {

"nes_url": "https.//nes.nymi.com/nes",

Ilqua,yll: {

"NymiBandID": "C2:FA:D7:F0:D7:96"

}
"lookup_keys": ["NfcUID"]

A successful lookup operation produces a response with the following properties.

{
"operation”: "lookup",
"exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
"payload": {
“lookup_values': {"NfcUID": "1234xyz"},

e
"status": "0",
"error: {}

Copyright ©2023 Nymi Connected Worker Platform 1.14.0
SDK Developer Guide—Nymi API (Windows) v1.0 40

Troubleshooting

Troubleshooting

Nymi API writes information to log files that allow you to monitor and troubleshoot the NEA.

For additional assistance, visit the Support page on the Nymi website, or contact your Nymi

Solution Consultant.

The following table summarizes the log files that are available for troubleshooting.

Table 7: Log file locations

Nymi API By default, the current working | nymi_api.log
directory.
Nymi Agent C:\Nymi\NymiAgent nymi_agent.log

Nymi Bluetooth Endpoint

C:\Nymi\Bluetooth_Endpoint
\logs

nymi_bluetooth_endpoint.log

Enable debug mode

When testing NAPI and builds, set the NYM _DEBUG environment variable to any value to
enable debug logging, and the restart the Nymi Agent and Nymi Bluetooth Endpoint services.

Copyright ©2023

Nymi Connected Worker Platform 1.14.0

SDK Developer Guide—Nymi API (Windows) v1.0

41

https://support.nymi.com/hc/en-us/requests/new

Copyright ©2023
Nymi Inc. All rights reserved.

Nymi Inc. (Nymi) believes the information in this document is accurate as of its
publication date. The information is subject to change without notice.

The information in this document is provided as-is and Nymi makes no representations or
warranties of any kind. This document does not provide you with any legal rights to any
intellectual property in any Nymi product. You may copy and use this document for your
referential purposes.

This software or hardware is developed for general use in a variety of industries and
Nymi assumes no liability as a result of their use or application. Nymi, Nymi Band, and
other trademarks are the property of Nymi Inc. Other trademarks may be the property of
their respective owners.

Published in Canada.
Nymi Inc.

Toronto, Ontario
www.nymi.com

http://www.nymi.com

	Contents
	Preface
	Nymi SDK Overview
	Overview of NAPI
	Call Concurrency
	request() function
	update() function
	Response Messages and Notifications
	Error Handling
	Status Code

	Example: Workflow for Nymi Band Tap

	Supported Platforms
	SDK Package
	Sample Application

	Configure the Development Terminal
	Importing the Root CA certificate
	Installing the Nymi Runtime
	Preparing the C/C++ project to use NAPI
	Preparing the C# project to use NAPI

	Creating NEAs with NAPI
	Types of Nymi Band Taps
	Tap and Authenticate Workflow
	Authenticated Tap Workflow

	Acquire an Authentication Token
	Operations and Notifications for Nymi API Initialization
	Init Operation
	Initialization error notifications
	Bluetooth Notifications
	Intent Notification
	Presence Notifications
	Presence Operation (Optional)

	Operations for Tap and Authenticate
	Assert_identity Operation
	Assert_identity response

	Operations and Notifications for Tap and Lookup
	Lookup Operation

	Troubleshooting
	Enable debug mode

