
SDK Developer Guide—
WebAPI(Windows)

Nymi Connected Worker Platform 1.19.0
v1.0

2024-11-08

Contents

Preface... 3

Nymi SDK Overview...5
Nymi WebAPI Overview... 5
SDK Package..6
Sample Application... 6

Creating Applications with Nymi WebAPI... 7
Types of Nymi Band Taps..7

Tap and Authenticate Workflow..8
Authenticated Tap Workflow... 10
Tap and Lookup Workflow..12

Operations and Notifications for Web App Initialization... 13
Subscribe_endpoint Operation..13
Bluetooth Notifications.. 14
Subscribe_identity Operation.. 15
Intent Notification.. 16
Presence Notifications.. 17
Presence Operation (Optional)... 17

Operations for Tap and Authenticate... 18
Assert_identity Operation..18

Operations and Notifications for Authenticated Tap...20
Assert_identity Notifications.. 20

Operations and Notifications for Tap and Lookup..22
Lookup Operation..22

Troubleshooting..26
Enable debug mode... 26

Copyright ©2024 Nymi Connected Worker Platform
1.19.0 SDK Developer Guide—WebAPI(Windows) v1.0 ii

Preface

Preface
Nymi™ provides periodic revisions to the Nymi Connected Worker Platform. Therefore, some
functionality that is described in this document might not apply to all currently supported
Nymi products. The Connected Worker Platform Release Notes provide the most up to date
information.

Purpose

This document is part of the Connected Worker Platform (CWP) documentation suite.

This document provides information about how to understand and develop Nymi-enabled
Applications (NEA) on Windows by utilizing the functionality of the Nymi SDK, over a
WebSocket connection that is managed by a web-based or other application.

Audience

This guide provides information to Software Application Developers.

Revision history

The following table outlines the revision history for this document.

Table 1: Revision history

Version Date Revision history

1.0 November 08, 2024 First release of this document for
the CWP 1.19.0 release.

Related documentation

• Nymi Connected Worker Platform—Overview Guide

This document provides overview information about the Connected Worker Platform (CWP)
solution, such as component overview, deployment options, and supporting documentation
information.

• Nymi Connected Worker Platform—Deployment Guide

This document provides the steps that are required to deploy the Connected Worker
Platform solution.

Separate guides are provided for authentication on iOS and Windows device.
• Nymi Connected Worker Platform—Administration Guide

This document provides information about how to use the NES Administrator Console to
manage the Connected Worker Platform (CWP) system. This document describes how to

Copyright ©2024 Nymi Connected Worker Platform
1.19.0 SDK Developer Guide—WebAPI(Windows) v1.0 3

Preface

set up, use and manage the Nymi Band™, and how to use the Nymi Band Application. This
document also provides instructions on deploying the Nymi Band Application and Nymi
Runtime components.

• Nymi SDK Developer Guide—NymiAPI(Windows)

This document provides information about how to develop Nymi-enabled Applications by
using the Nymi API(NAPI).

• Connected Worker Platform with Evidian Installation and Configuration Guide

The Nymi Connected Worker Platform with Evidian Guides provides information about
installing the Evidian components and configuration options based on your deployment.
Separate guides are provided for Wearable, RFID-only, and mixed Wearable and RFID-
only deployments.

• Nymi Connected Worker Platform—Troubleshooting Guide

This document provides information about how to troubleshoot issues and the error
messages that you might experience with the NES Administrator Console, the Nymi
Enterprise Server deployment, the Nymi Band, and the Nymi Band Application.

• Nymi Connected Worker Platform with Evidian Troubleshooting Guide

This document provides overview information about how to troubleshoot issues that you
might experience when using the Nymi solution with Evidian.

• Nymi Connected Worker Platform—FIDO2 Deployment Guide

The Nymi Connected Worker Platform—FIDO2 Deployment Guide provides information
about how to configure Connected Worker Platform and FIDO2 components to allow
authenticated users to use the Nymi Band to perform authentication operations.

• Connected Worker Platform with POMSnet Installation and Configuration Guide

The Nymi Connected Worker Platform—POMSnet Installation and Configuration Guides
provides information about how to configure the Connected Worker Platform and POMSnet
components to allow authenticated users to use the Nymi Band to perform authentication
operations in POMSnet.

• Nymi Band Regulatory Guide

This guide provides regulatory information for the Generation 3 (GEN3) Nymi Band.
• Third-party Licenses

The Nymi Connected Worker Platform—Third Party Licenses Document contains
information about open source applications that are used in Nymi product offerings.

How to get product help

If the Nymi software or hardware does not function as described in this document, you can
submit a support ticket to Nymi, or email support@nymi.com

How to provide documentation feedback

Feedback helps Nymi to improve the accuracy, organization, and overall quality of the
documentation suite. You can submit feedback by using support@nymi.com

Copyright ©2024 Nymi Connected Worker Platform
1.19.0 SDK Developer Guide—WebAPI(Windows) v1.0 4

https://support.nymi.com/hc/en-us/requests/new
support@nymi.com
support@nymi.com

Nymi SDK Overview

Nymi SDK Overview
The Nymi SDK provides Developers with libraries, APIs, sample code and documentation to
build a Nymi-enabled Application (NEA).

Note: In this guide, the use of the term your application, your web-based application, and your
native application refers to an NEA .

Nymi SDK delivers the Nymi API(NAPI) through a Windows Dynamically Linkable Library(DLL)
named nymi_api.dll that developers include in a Windows application that supports a locally
linked library.

Nymi WebAPI Overview
Nymi WebAPI is an RFC-6455 compliant WebSocket. NEAs, such as web-based applications
use a standard WebSocket client to access Nymi WebAPI.

The Nymi WebAPI:

• Allows developers to utilize the WebSocket functionality of the Nymi SDK in a web-based or
native application. The Nymi WebAPI architecture is part of the Nymi SDK.

• Provides bi-directional communication using requests/responses over a persistent
connection. All messages sent and received are encoded in JSON format.

• Supports the Microsoft Windows and Apple iOS platforms only
• Provides continuous communication using WebSocket connections between the Nymi

Agent and Nymi-enabled Application (NEA) running either as a native application or inside
of a web client.

• Communicates with Nymi Bands over a WebSocket client and supports Nymi Band taps on
a supported NFC reader or the Nymi-supplied the Bluetooth adapter. .

To enable NFC support, on the user terminal you must:

• Connect the NFC reader
• Install a compatible version of the Nymi Bluetooth Endpoint

To secure communication between Nymi Agent and WebAPI client applications, Nymi highly
recommends that you enable TLS for the WebAPI interface.

When a user performs a Nymi Band tap to complete an authentication or e-signature in
WebAPI application, the Nymi Bluetooth Endpoint sends an intent event that represents the tap
to the application through the interface of the Nymi Agent.

Configuration parameters are set in a TOML file, as described later in this document.

Copyright ©2024 Nymi Connected Worker Platform
1.19.0 SDK Developer Guide—WebAPI(Windows) v1.0 5

Nymi SDK Overview

WebSocket Keepalive Message

Nymi implements keepalive messages according to the RFC-6455 WebSocket Protocol
standard for bi-directional communication. Nymi sends a ping message every 30 seconds to
the NEA and expects to receive a pong message response. The keepalive message indicates
that the connection is still responsive.

Nymi-supported web browsers send a pong message in response to the ping control frame
message. The pong control frame message ensures that the session is connected to the Nymi
Bluetooth Endpoint. NEA supported web browsers do not require any additional configuration to
support this functionality.

If you are using a native WebSocket client, additional implementation may be required.

Note: The WebSocket client, which is the NEA, disconnects from the Nymi Agent if there are
no messages (including pings and pongs) sent or received for a period of 60 seconds.

SDK Package
The SDK package contains the following folders:

• ..\nymi-sdk\windows\i686—Contains the NAPI dll file for i686 user terminals.
• ..\nymi-sdk\windows\sampleApps—Contains sample Nymi-enabled Applications(NEAs).
• ..\nymi-sdk\windows\x86_64—Contains the NAPI dll file for i686 user terminals.
• ..\nymi-sdk\windows\setup\BleDriver_x64.msi—64-bit Bluegiga driver installation file.
• ..\nymi-sdk\windows\setup\BleDriver_x86.msi —32-bit Bluegiga driver installation file.
• ..\nymi-sdk\windows\setup\NymiRuntime-5.9.1.8.msi—Nymi Runtime MSI installation file.
• ..\nymi-sdk\windows\setup\Nymi Runtime installer.version.exe —Nymi Runtime installation

file.

Sample Application
The Nymi SDK package includes a sample application that demonstrates some of the key
functionality of the Nymi solution.

The sample application is a simple Javascript application that demonstrates all the basic
functions that are supported by the API and allows a user to see both JSON request and
response examples to help understand how the API works.

Sample Application for Nymi WebAPI

The sample application for Nymi WebAPI is located in the ..\nymi-sdk\windows\javascript
\webapiSample folder. The application prompts you for the configuration parameters that are
unique to your environment.

Copyright ©2024 Nymi Connected Worker Platform
1.19.0 SDK Developer Guide—WebAPI(Windows) v1.0 6

Creating Applications with Nymi WebAPI

Creating Applications with Nymi
WebAPI

Customer and partner developers can use the Nymi WebAPI to develop Nymi-enabled
Application (NEAs) in programming languages, such as Java or C#. The API is based on
JSON messages that are exchanged with the server over a websocket connection. This
chapter provides information about the supported operations.

To deploy your application, you must install the Nymi Runtime on each terminal where your
application runs. The Nymi Runtime includes the following components: Nymi Bluetooth
Endpoint, and Nymi Agent.

Note: In this document, the use of device refers to the Nymi Band.

The Nymi Band provides authentication information about a user to applications. An
application can use this information on a point-in-time basis (for simple authentication) or
continuously (for both authentication and de-authentication).

Types of Nymi Band Taps
To perform an authentication task, a Nymi Band user taps their authenticated Nymi Band on
either an NFC reader(NFC tap) or the Bluetooth adapter (BLE tap) that is connected to a user
terminal.

The Nymi SDK allows your application to authenticate a user. A user provides their
authentication intention (intent) when they perform a Nymi Band tap.

As a developer, you must decide how your application handles a Nymi Band tap. Nymi SDK
provides you with three design options.

Table 2: Design Options for Nymi Band Taps

Option Description Benefits and Nymi Recommended Use
Case

Tap and
Authenticate

When a user performs an NFC tap or
a BLE tap, the Nymi SDK initiates the
authentication of the Nymi Band by
using a cryptographic protocol over a
Bluetooth connection.

Tap and Authenticate offers the best
security, with a slight increase in response
time.

Nymi recommends that you use this
design when Nymi Band users access your
application from a Windows user terminal.

Copyright ©2024 Nymi Connected Worker Platform
1.19.0 SDK Developer Guide—WebAPI(Windows) v1.0 7

Creating Applications with Nymi WebAPI

Option Description Benefits and Nymi Recommended Use
Case

Authenticated Tap When a user performs a BLE tap,
NES authenticates the Nymi Band by
verifying cryptographic information
that the Nymi Band transmits through
the BLE tap. NES does not need to
establish a Bluetooth connection to
perform the cryptographic operation
with the Nymi Band.

Authenticated Tap offers very good security
and offers a very fast response time. Nymi
recommends this option when the user
terminal establishes Bluetooth connections
slowly, for example, when the Nymi Band
user taps on the Bluetooth reader of an
iOS device.

Tap and Lookup When a user performs a tap, the NEA
performs a lookup operation to identity
the Nymi Band user. The Nymi Band
and the Nymi SDK do not exchange
cryptographic information, however;
the Nymi Band still needs to have
authenticated the user by using their
fingerprint or corporate credentials
authentication.

This design is a legacy option. Nymi
recommends that you update your
application to use either Tap and
Authenticate or Authenticated Tap.

Tap and Authenticate Workflow
When a Nymi Band user taps and the Nymi-enabled Application(NEA) handles Nymi Band
taps with an Tap and Authenticate design, a series of events occur before the completion of the
authentication task.

The following figure provides an example of the Tap and Authenticate worflow.

Copyright ©2024 Nymi Connected Worker Platform
1.19.0 SDK Developer Guide—WebAPI(Windows) v1.0 8

Creating Applications with Nymi WebAPI

Figure 1: Tap and Authenticate Workflow

The first step is to wait for an intent notification. The intent operation tells the application that a
user has placed their Nymi Band on an NFC reader that is connected to the workstation. The
intent operation returns a device ID, which is the standard identifier of a Nymi Band in the CWP
solution.

After the intent notification returns a device ID, the application ensures that the device is
present. This action is performed in one of the following ways:

• Passively as NAPI continuously sends notifications about present Nymi Bands.
• Actively by requesting a presence operation with the desired device ID, and then waiting for

a response.

Copyright ©2024 Nymi Connected Worker Platform
1.19.0 SDK Developer Guide—WebAPI(Windows) v1.0 9

Creating Applications with Nymi WebAPI

For passive notifications, since NAPI sends notifications for the full list of Nymi Band present
at start-up, an application can track all present bands and then check its list of current Nymi
Bands. After presence is established, the application can request an assert_identity operation
for the Nymi Band. The assert_identity operation uses a bi-directional challenge-response to
establish a secure channel between the Nymi Agent and the requested Nymi Band. When
the action results in the establishment of the secure channel, the assert_identity verifies
the authentication state of the Nymi Band. When the assert_identity operation completes
successfully the operation passes the username and domain of the associated user back to
the application, and the application can continue with an absolute assurance that the Nymi
Band is present and authenticated to the correct user.

Note: The Nymi Band exchanges data over Bluetooth Low Energy(BLE) and the exchange
consists of several cryptographic operations. As a result, the assert_identity operation can take
up to two seconds to complete.

Continuous monitoring of the WebSocket to watch for presence notifications indicates to an
application when a user has authenticated, de-authenticated (by removing their Nymi Band),
or when the user leaves a physical area. The presence notifications always returns one of the
following statuses for a single Nymi Band.

• Weak—The Nymi Band is present. A strong presence is represented by the successful
return of an assert_identity operation.

• Absent—The Nymi Band is not present.
• Unauthenticated—The Nymi Band is not authenticated.

Note: Ensure that the loss of presence triggers your application to log out, lock, or remove
user access to functionality.

Authenticated Tap Workflow
When a Nymi Band user taps and the Nymi-enabled Application(NEA) handles Nymi Band
taps with an Authenticated Tap workflow, a series of events occur that result in the NEA (web
application) receiving a notification.

The notification indicates to the web application that:

• A user wearing an authenticated Nymi Band wants to perform an authentication task.
• NES has authenticated the Nymi Band over Bluetooth.

The following figure summarizes the workflow that the solution follows for an Authenticated Tap.

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 10

Creating Applications with Nymi WebAPI

Figure 2: Workflow for Authenticated Taps

The workflow includes two distinct phases. Each phase includes user-initiated and application-
initiated actions.

Phase 1—Initialize NEA

This phase occurs each time a user connects to the web application and results in the
establishment of connectivity between the web application and the Nymi components.

1. User opens the NEA on their iOS device.
2. The NEA establishes a WebSocket connection to the Nymi Agent.
3. The NEA sends a subscribe_endpoint request to the Nymi Agent. The subscribe_endpoint

request identifies the Nymi Bluetooth Endpoint that the web application communicates with.
4. The Nymi Agent sends a ble_ready notification to the web application.

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 11

Creating Applications with Nymi WebAPI

5. The Nymi Bluetooth Endpoint receives advertisements from authenticated Nymi Bands that
are near the Bluetooth adapter. Nymi Bluetooth Endpoint generates presence events for
each Nymi Band, and sends them to Nymi Agent.

6. The Nymi Agent starts to send a presence notifications for each authenticated Nymi Band
that is near the user terminal to the web application.

7. Web application sends a subscribe_identity request to the Nymi Agent.
8. Nymi Agent responds to the request. Nymi Agent returns a success response.

Phase 2—Create E-signature

This phase occurs each time a user performs an e-signature with the Nymi Band and results in
the completion of an e-signature with the tap of a Nymi Band.

1. From a window within the web application the user performs an action that requires an e-
signature, and then the user taps the Nymi Band on the Bluetooth adapter. Nymi Bluetooth
Endpoint detects the tap and notifies to the Nymi Agent.

2. Nymi Agent request that NES verify the advertising packet of the Nymi Band.
3. NES verifies the packet and contacts Active Directory to confirm the user credentials.
4. NES returns the response to the Nymi Agent.
5. Nymi Agent sends an assert_identity notification to the web application. The web application

reviews the notification and based on the information, completes the e-signature or does
not complete the e-signature.

Tap and Lookup Workflow
When a Nymi Band user taps and the Nymi-enabled Application(NEA) handles Nymi Band
taps with an Tap and Lookup design, a series of events occur before the completion of the
authentication task.

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 12

Creating Applications with Nymi WebAPI

Figure 3: Tap and Lookup Workflow

The first step is to wait for an intent notification. The intent operation tells the application that a
user has placed their Nymi Band on an NFC reader that is connected to the workstation. The
intent operation returns a device ID, which is the standard identifier of a Nymi Band in the CWP
solution.

After the intent notification, the application requests a lookup operation, which returns
the username and domain of the user that is associated with the Nymi Band, then the
authentication completes.

Operations and Notifications for Web
App Initialization

This section summarizes the operations and notifications that initialize the Web App and
allow your application to handle Nymi Band taps.

Subscribe_endpoint Operation
The subscribe_endpoint operation allows your application to change the Nymi Bluetooth
Endpoint to which it is subscribed.

subscribe_endpoint request operations appear in the following format:

 {

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 13

Creating Applications with Nymi WebAPI

 "operation": "subscribe_endpoint",
 "exchange":"exchange_value",
 "payload": {
 "endpoint_id": "ip_address"
 }
 }

where:

• operation is subscribe_endpoint.
• exchange is any value and is used to match the response to the request.
• endpoint_id is based on the endpoint IP address. Required when the configuration uses a

centralized Nymi Agent.

The subscribe_endpoint operation returns a status code only, no errors are returned.

 {
 “operation”: “subscribe_endpoint”,
 "exchange":"exchange_value",
 “payload”: {}
 “status”: 0,
 “error”: {}
 }

You can only subscribe your application to one endpoint at any given time. When you request
the subscribe_endpoint operation, the NEA is automatically unsubscribed from the previously
subscribed endpoint. Any Nymi Bands that were present on the previously subscribed
endpoint become absent, and your application receives corresponding presence update
notifications. The NEA will then receive a Bluetooth status notification. If the requested Nymi
Bluetooth Endpoint has connected successfully and is in a ready state, your application
receives a ble_ready notification, followed by presence update notifications for any present
bands on that endpoint. Otherwise, your application receives an error message. See Bluetooth
Notifications for more information about possible error messages.

Note: The NEA remains subscribed to the requested endpoint_id even if it is not able to
connect to that Nymi Bluetooth Endpoint. If the Nymi Bluetooth Endpoint becomes ready at a
later time (for example, when a user turns on the user terminal), then your application receives
a ble_readyendpoint_id message at that time.

Bluetooth Notifications
Nymi Bluetooth Endpoint is a client service that communicates with the Bluetooth Adapter.
Bluetooth notifications for Bluetooth Adapter status are non-transactional.

The Bluetooth Adapter communicates to the Nymi Band. Each time that a Bluetooth Adapter
becomes available, the update function retrieves a notification in the following format.

 {
 "operation": "ble_ready",

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 14

Creating Applications with Nymi WebAPI

 "exchange": null,
 "status": 0,
 "payload": {},
 "error ": {}
 }

If a Bluetooth Adapter becomes unavailable, the update function retrieves an error notification
in the following format.

 {
 "operation": "error",
 "exchange": null,
 "payload": {},
 "status": "error_code",
 "error": {
 "error_description":"error_description>",
 "error_specifics":"error_specifics"
 }
 }

where error_code is one of the following values: 5000, 5010, 5100.

For more information about error codes, see Error Handling.

Subscribe_identity Operation
The subscribe_identity operation enables your application to process Bluetooth Tap
notifications through the VerifyPAC API on NES to confirm the identity of the Nymi Band user.

subscribe_identity request operations appear in the following format:

 {
 "operation": "subscribe_identity",
 "exchange":"exchange_value",
 "payload": {

 "assertion": "jwt|none",
 "nonce": "nonce_value"
 }
 }

where:

• operation is subscribe_identity.
• exchange is any value and is used to match the response to the request.
• payload can contain two optional parameters:

• assertion. Acceptable values are:

• jwt—The operation requires an NES-issued signed assertion in the form of a JSON
Web Token.

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 15

Creating Applications with Nymi WebAPI

• none—The operation does not require an NES-issued signed assertion.

When you do not specify the assertion parameter, the default value is none.
• nonce is any value that the subscribe_identity operation includes in the signed assertion,

to prevent replay attacks. Required only when you configure the assertion parameter
with jwt.

The subscribe_identity operation returns response.

The following table summarizes the status codes can appear:

Table 3: Subscribe_identity status codes

Status Code Description

0 Connection was successfully subscribed in the
WebAPI to the subscribe_identity workflow.

1000 subscribe_identity contains an invalid JSON
string, or the payload contains an unacceptable
assertion value.

The response appears in the following format:

 {
 “operation”: “subscribe_identity”,
 "exchange":"exchange_value",
 “payload”: {}
 “status”: 0|1000,
 “error”: {}
 }

When the verification succeeds, subscribe_identity enables the assert_identity notification, as
described in the following section.

Intent Notification
When a user taps their authenticated Nymi Band on or near a bluetooth radio antenna or
NFC reader, the action represents an intent to perform an authentication task, such as an e-
signature.

Status Codes

A 2201 status code is reported when the NFC reader is unsuccessful at mapping the Nfc UID
to the enrolled Nymi Band.

A 2200 status code is reported when a NES communication error (for example, NES is offline)
occurs.

Note: The 2201 and 2200 status codes do not contain a NymiBandID in the payload.

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 16

Creating Applications with Nymi WebAPI

Presence Notifications
When Nymi WebAPI detects a change in Nymi Band presence, Nymi WebAPI generates a
presence notification.

After your application establishes the websocket session, the system sends an updated
notification each time any of presence parameters change.

It is recommended that you develop a method for your application that tracks when the Nymi
Bands come in and out of range.

Presence notifications appear in the same format as the presence operation.

Presence Operation (Optional)
Using the presence request, you can retrieve the current state of the Nymi Band. Presence
requests are non transactional. The presence request has no response and a presence
response is not tied to a specific request.

When a presence request is sent, the system will replay the last presence update received.
When a presence state changes you will receive automatic notifications. For information about
these notifications, see Presence notifications.

Presence is relative to an endpoint (the response indicates if the Nymi Band is in range of
your application. A Nymi Band can be present on some endpoints, but absent on others. If the
presence state is false the presence state returns as absent.

JSON Object Format

Define the presence request JSON object in the following format.

 {
 "operation": "presence",
 "exchange":"exchange_value",
 payload":{
 "device": "NymiBandID",
 "proximity" : "proximity value",
 "service_request_state" : "service request state",
 "state" : "state"
 },
 }

where:

• NymiBandID: Is the Nymi Band MAC address.
• proximity_value: Is determined by the distance between the Nymi Band and the BLE

adapter. The proximity_value will change when the Nymi Band moves closer or farther from
the BLE adapter.

• state: Is determined by the state of the Nymi Band; weak, absent, or unauthenticated. The
following table describes the state values in more detail:

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 17

Creating Applications with Nymi WebAPI

Table 4: State values for presence

State Value Definition

Absent The Nymi Agent cannot communicate with the Nymi Band.
This state also applies when a user wears an unenrolled Nymi
Band.

Reasons for Nymi Band absence include:

• Nymi Band has been removed from the body.
• Nymi Band has not communicated with the Nymi Agent for

at least 30 seconds.
• Nymi Band has not been within the range of the BLE

Adapter for at least 30 seconds.

Unauthenticated Nymi Band is enrolled and but not authenticated.

Weak Nymi Band is in an authenticated state.

• service request state: Is a flag that accompanies each presence notification and determines
if there is a message in the Nymi Band that is ready to be downloaded. If the value of
service_request_state is not zero, the Nymi Band has service level messages. If the
value is '0', there are no messages

Operations for Tap and Authenticate
When a user performs an NFC tap, Nymi WebAPI provides your application with an intent
notification and your application uses the assert_identity operation to verify that the Nymi Band
user that taps on an NFC reader .

Assert_identity Operation
The assert_identity operation provides your application with the ability to confirm that a Nymi
Band that is assigned to a specific user is authenticated and within Bluetooth range.

The assert_identity operation completes a cryptographic handshake with the Nymi Band and
verifies user/band identity.

Note: The Nymi Band must be in an authenticated state when you call the assert_identity
operation.

Define the assert_identity JSON object in the following format.

 {
 "operation": "assert_identity",
 "exchange": "exchange_value",
 "payload": {
 "nes_url": "https_url_to_nes",
 "device": "NymiBandID",

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 18

Creating Applications with Nymi WebAPI

 "assert_type": "assert_user"
 }
 }

where:

• nes_url field is optional. If not provided, the operation uses the nes_url value that you
specified in the Nymi Agent toml file.

• NymiBandID is the Nymi Band (or device) ID value that is returned in the lookup result.

The following code block provides an example of a JSON object that
instructs Nymi WebAPI to assert the identity of the user with device ID
C2:FA:D7:F0:D7:96.

 {
 "operation": "assert_identity",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "nes_url": "http://nes.nymi.com/nes/",
 "device": "C2:FA:D7:F0:D7:96",
 "assert_type": " assert_user "
 }
 }

Assert_identity response
The assert_identity request returns Username and Domain. properties

Assert_identity Results

The UserStatus property is an optional property. The UserStatus is stored in the Active
Directory (AD).

If the UserStatus option is set in the NES console in the Policies > Active Directory page, the
Active Directory status appears in the assert_identity response. If the option is not set, it does
not return in the response.

The UserStatus option has the following possible values:

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Active|Locked User account is locked. This status can appear
with Password Expired.

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 19

Creating Applications with Nymi WebAPI

User Status Definition

Active|PasswordExpired User account has an expired password. This
status can appear with Locked.

The last three properties can be combined into a comma separated list.

By default, NES disables support for user status checks in AD. Contact the NES Administrator
to enable AD user status checking, and optionally the checking interval in the NES
Administrator Console.

A successful assert_identity operation produces a response with the following properties.

 {
 "operation": "assert_identity",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "Username": "Jsmith",
 "Domain": "Corp",
 "UserStatus": "Active",
 "jwt": "json web token"
 }
 "status": "0",
 "error: {}
 }

Operations and Notifications for
Authenticated Tap

The notification for an Authenticated Tap differs depending on the type of application.

For Windows and web-based iOS applications, your application uses the subscribe_identity
operation during the initialization phase, which provides the assert_identity notification to verify
the Nymi Band user that taps on a Bluetooth Adapter.

For native iOS applications, the Nymi Application modifies the return URL to include the JWT
or error codes. Your application must decode and verify the JWT.

Assert_identity Notifications
When the user taps their Nymi Band on the Bluetooth adapter and VerifyPAC successfully
verifies the user, WebAPI sends an assert_identity notification to the subscribed client
connection with a status of 0.

You application retrieves a notification in the following format.

 {
 "operation": "assert_identity",

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 20

Creating Applications with Nymi WebAPI

 "exchange": "exchange",
 "status": 0,
 "payload": {
 "User": "username",
 "Domain": "domain_name",
 "UserStatus": "user_status"
 },
 "error ": {}
 }

where:

• operation is assert_identity.
• exchange is any value and is used to match the response to the request.
• payload displays the username and domain for the Nymi Band user, and optionally the

status of the user in Active Directory (AD) and the NES-issued JWT token.

The AD status for a user appears in the response when user status check is enabled in NES.
The following table summarizes the possible user statuses.

• Table 5: AD user statuses

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Active | Locked User account is locked. This status can appear
with Active and Password Expired.

Active | PasswordExpired User account has an expired password. This
status can appear with Active and Locked.

By default, NES is not configured to perform user status checks in AD. Contact the NES
Administrator to enable AD user status checking, and optionally the checking interval in the
NES Administrator Console.

If the VerifyPAC fails, the update function retrieves an error notification in the following format.

 {
 "operation": "error",
 "exchange": null,
 "payload": {},
 "status": "error_code",
 "error": {
 "error_description":"error_description",
 "error_specifics":"error_specifics"
 }
 }

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 21

Creating Applications with Nymi WebAPI

The following table summarizes the error code and error description that VerifyPAC might
return to the NEA.

Table 6: VerifyPAC Errors

Error Code Error Description

7001 Authentication Error. Log in to the Nymi Band Application to update Nymi Band
settings.. This error appears when battery level became very low before the user
charged the Nymi Band, and the real-time clock cannot keep time. To resolve
this issue, the Nymi Band user must log into the Nymi Band Application while they
wear their authenticated Nymi Band to reset the real time clock.

7002 Authentication Error. Cannot find the Nymi Band in the Nymi Enterprise Server.
Contact your administrator. This error appears when the user enrolled their Nymi
Band to a different NES.

7003 Authentication Error. Key cannot be found on the Nymi Enterprise Server.
Contact your administrator. This error appears when the advertising key does not
exist for the Nymi Band.

7004 Authentication Error. Please retry.. This error appears when the VerifyPAC
operation cannot verify the authenticity of the presence authentication code
(PAC). Provide the user with an message similar to the following: Authentication
Error. Retry.

7005 Communication error. Contact your administrator. This error appears when there
is an issue with the VerifyPAC request payload.

Note: The subscription exists until the WebSocket connection/session ends for the client.

Operations and Notifications for Tap and
Lookup

When a user performs an NFC tap, Nymi WebAPI provides your application with an intent
notification, and then your application uses the assert_identity and lookup operations
verify the Nymi Band user that taps on an NFC reader .

Lookup Operation
Use the lookup operation to determine the following values:

• Device ID (MAC address) of the Nymi Band.

Note: An intent notification includes the device ID or you can retrieve the device ID of a
Nymi Band from NES by using the lookup operation.

• NfcUID of the Nymi Band.
• Domain and name of the user.

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 22

Creating Applications with Nymi WebAPI

• User status in Active Directory (AD). The AD status for a user appears in the response
when user status check is enabled in NES. The following table summarizes the possible
user statuses.

Table 7: AD user statuses

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Active | Locked User account is locked. This status can appear
with Active and Password Expired.

Active | PasswordExpired User account has an expired password. This
status can appear with Active and Locked.

InActive | AccountExpired User account has expired in AD.

By default, NES does not perform user status checks in AD. Contact the NES Administrator to
enable AD user status checking, and optionally the checking interval in the NES Administrator
Console.

JSON Object Format

Define the payload JSON object for the lookup command in the following format.

 {
 "operation": "lookup",
 "exchange": "exchange_value",
 "payload": {
 "nes_url": "https_url_to_nes",
 "query": "query_JSON",
 "lookup_keys": "key_JSON"
 }
 }

where:

• nes_url the NES URL.
• query field is a JSON object that defines the values that are passed during the request

to retrieve the response. Acceptable values include NfcUID, Domain and Username, and
NymiBandID.

Note: The property names Domain and Username are case-sensitive.
• lookup_keys field is a JSON array that contains a list of values that you want to appear in

the response. Supported values include NfcUID, Domain and Username, NymiBandID, and
UserStatus.

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 23

Creating Applications with Nymi WebAPI

Example 1

The following code block provides an example of a JSON object that instructs
Nymi WebAPI to provide the NfcUID of a device and the user status for a user
named JSmith in the MyCorpDomain domain.

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "Domain":"MyCorpDomain",
 "Username": "JSmith"
 }
 "lookup_keys": ["NfcUID", "UserStatus"]
 }
 }

Result 1

A successful lookup operation produces a response with the following properties.

In this example, the check user status in AD option is enabled in NES, as a result, the
response includes the UserStatus property.

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values":{"NfcUID": "1234xyz", "UserStatus":"Active|PasswordExpired"},
 },
 "status": "0",
 "error: {}
 }

Example 2

The following code block provides an example of a JSON object that instructs
Nymi WebAPI to provide the NfcUID of a device with Nymi Band (or device) ID
"C2:FA:D7:F0:D7:96".

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "NymiBandID": "C2:FA:D7:F0:D7:96"
 }
 "lookup_keys": ["NfcUID"]

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 24

Creating Applications with Nymi WebAPI

 }
 }

Result 2

A successful lookup operation produces a response with the following properties.

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values": {"NfcUID": "1234xyz"},
 },
 "status": "0",
 "error: {}
 }

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 25

Troubleshooting

Troubleshooting
Nymi API writes information to log files that allow you to monitor and troubleshoot your
application.

For additional assistance, visit the Support page on the Nymi website, or contact your Nymi
Solution Consultant.

The following table summarizes the log files that are available for troubleshooting.

Table 8: Log file locations

Component Log location Files

Nymi API By default, the current working
directory.

nymi_api.log

Nymi Agent C:\Nymi\NymiAgent nymi_agent.log

Nymi Bluetooth Endpoint C:\Nymi\Bluetooth_Endpoint
\logs

nymi_bluetooth_endpoint.log

Enable debug mode
When testing Nymi WebAPI and builds, set the NYMI_DEBUG environment variable to any
value to enable debug logging, and the restart the Nymi Agent and Nymi Bluetooth Endpoint
services.

Copyright ©2024 Nymi Connected Worker Platform 1.19.0
SDK Developer Guide—WebAPI(Windows) v1.0 26

https://support.nymi.com/hc/en-us/requests/new

Copyright ©2024
Nymi Inc. All rights reserved.

Nymi Inc. (Nymi) believes the information in this document is accurate as of its
publication date. The information is subject to change without notice.

The information in this document is provided as-is and Nymi makes no representations or
warranties of any kind. This document does not provide you with any legal rights to any
intellectual property in any Nymi product. You may copy and use this document for your
referential purposes.

This software or hardware is developed for general use in a variety of industries and
Nymi assumes no liability as a result of their use or application. Nymi, Nymi Band, and
other trademarks are the property of Nymi Inc. Other trademarks may be the property of
their respective owners.

Published in Canada.
Nymi Inc.
Toronto, Ontario
www.nymi.com

http://www.nymi.com

	Contents
	Preface
	Nymi SDK Overview
	Nymi WebAPI Overview
	SDK Package
	Sample Application

	Creating Applications with Nymi WebAPI
	Types of Nymi Band Taps
	Tap and Authenticate Workflow
	Authenticated Tap Workflow
	Tap and Lookup Workflow

	Operations and Notifications for Web App Initialization
	Subscribe_endpoint Operation
	Bluetooth Notifications
	Subscribe_identity Operation
	Intent Notification
	Presence Notifications
	Presence Operation (Optional)

	Operations for Tap and Authenticate
	Assert_identity Operation
	Assert_identity response

	Operations and Notifications for Authenticated Tap
	Assert_identity Notifications

	Operations and Notifications for Tap and Lookup
	Lookup Operation

	Troubleshooting
	Enable debug mode

