
Nymi SDK for C Developer's
Guide

Nymi Connected Worker Platform
v1.0

2022-05-16

Contents

Nymi SDK Overview.. 3
Development Tools.. 4
Supported Platforms...4
Supported NFC Readers.. 4
NEA Certificates.. 5
Sample Application..5

Configure the Development Terminal.. 7
SDK Package... 7
Importing the Root CA certificate...7
Installing the Nymi Runtime... 9

Creating NEAs with NAPI...11
Overview of NAPI... 11

Call Concurrency...11
request() function.. 11
update() function... 13
Response Messages and Notifications..13
Error Handling...14
Example: Workflow for Nymi Band Tap...16

Preparing the C/C++ project to use NAPI.. 18
Preparing the C# project to use NAPI.. 19
Acquire an Authentication Token..20
init operation.. 21
Initialization error notifications... 24
Bluetooth notifications... 25
presence operation..26

Presence Notifications...27
Intent Notification.. 29
assert_identity operation.. 30

assert_identity response...31
lookup... 32
device version...34
subscribe operation...35

Troubleshooting... 37
Enable debug mode..37

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 ii

Nymi SDK Overview

Nymi SDK Overview

The Nymi SDK provides Developers with libraries, APIs, sample code and documentation to build a
Nymi-enabled Application (NEA). The Nymi API (NAPI) architecture is part of the Nymi SDK.

The Nymi SDK package contains the following components:

• Nymi Runtime - Handles the primary functions of the Nymi Band communication and consists of
the following components:

• Nymi Agent - Provides BLE management, manages operations and message routing. Facilitates
communication between NEAs and the Nymi Band, and maintains knowledge of the Nymi Band
presence and authenticated states.

You can install Nymi Agent on each workstation or install Nymi Agent in a central location,
and then specify the location of the Nymi Agent in an Nymi Bluetooth Endpoint
configuration file.

• Nymi Bluetooth Endpoint - Provides an interface between the Bluegiga Dongle (BLE)
and the Nymi Agent. You deploy Nymi Bluetooth Endpoint on individual workstations
to provide local BLE communication with Nymi Bands through the Nymi-provided Bluegiga
Adapter.

• NAPI - Library that acts as a universal converter plugin with a standard set of instructions to allow
developers to create NEAs that access Nymi Band functionality and securely communicate with
Nymi Bands.

NAPI supports the use of Bluetooth and NFC to provide intent. For example, when a user taps their
Nymi Band on an NFC device, that is connected to their user terminal, the Nymi Bluetooth
Endpoint sends an intent event message to the Nymi Agent.

NAPI exposes a very simple C interface that provides the following benefits:

• Minimizes the complexity of the integration and allows bidirectional communication by
exchanging messages in JSON format.

• Supports the use of foreign function interfaces (FFIs), which enables developers to use the Nymi
SDK with any language or environment that supports linking with C libraries.

Nymi SDK Package Contents

The Nymi SDK package contains the following artifacts:

• nymi_api.dll (NAPI)
• sample applications
• BleDriver_xx.msi
• Nymi Runtime installer

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 3

Nymi SDK Overview

Nymi SDK Components and Communication

Figure 1: Nymi SDK Components and Communication

Development Tools
To develop NEAs on a Windows platform, you can use one of the following tools.

• Any Microsoft-supported version of Visual Studio.
• Visual Studio Code (or any other code editor).
• Any language that interfaces with a DLL, for example, Python

For C, C++, and C#, Nymi recommends that you use Visual Studio 2017.

Supported Platforms
The Nymi SDK supports the following platforms.

• Microsoft Windows 10, 64-bit
• Microsoft Windows 7, 32-bit and 64-bit

Supported NFC Readers
When you connect a supported NFC reader to a user terminal where the Nymi Bluetooth Endpoint
is installed, Nymi Bluetooth Endpoint automatically detects and monitors all attached NFC
readers, and then forwards events from all NFC readers to the NEA through the Nymi Agent

A list of supported NFC Readers is found in the Nymi Connected Worker Platform Administration
Guide.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 4

Nymi SDK Overview

NEA Certificates
An NEA and the Nymi Band establish trusted communication by using certificates. The first time that
a user runs the NEA, the NEA retrieves a certificate from NES. The NEA certificate is stored in a
keystore. Access to the keystore, by default, is enabled for all users.

By default, the keystore is in the %APPDATA%\Roaming\Nymi directory.

Alternative locations include:

• C:\Windows\ServiceProfiles\LocalService\AppData\Roaming\Nymi for the Local Service account.
• C:\Windows\system32\config\systemprofile\AppData\Roaming\Nymi for the LOCAL SYSTEM (64-

bit binary) account.
• C:\Windows\SysWOW64\config\systemprofile\AppData\Roaming\Nymi for the LOCAL SYSTEM

(32-bit binary) account.

Sample Application
Nymi offers you a sample application that demonstrates some of the key functionality of the Nymi
solution.

The sample applications are located within the package at: ...\nymi-sdk\windows\samplesApps folder and
contain applications that are developed in C# and C++ .

Sample Application for C++

The sample application for C++ is located in the ...\nymi-sdk\windows\samplesApps\cpp\sdkSample
\sdkSample folder.

Before you can use the sample application, modify the following content in the sdkSample.cpp file to
reflect the configuration of your environment.

1. For

const char* nes_url = "nes_url";

replace nes_url with https://nes_server/nes_service_name where:

• nes_server is the Fully Qualified Domain name of the NES host.
• nes_service_name is the services mapping name of the NES web application. The default

value is nes.

For example, https://ev3-uat-srv1/ev3-uat-lab.local/nes

Note: The service mapping name for NES was defined during deployment.
• Close regedit.exe.

2. For

const char* nes_directory_service_id = "NES_DS";

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 5

Nymi SDK Overview

, replace NES_DS with the service mapping name that you provide in the previous step.
3. For

const char* username = "username_goes_here";

, replace username_goes_here with a username of an user that is valid in AD.
4. For

const char* password = "password_goes_here";

, replace password_goes_here with the password of a user that is valid in AD.
5. For

 const char* nea_name = "NEA_name_goes_here";

, replace NEA_name_goes_here with a arbitrary name to provide the NEA.

Sample Application for C#

The sample application for C# is located in the ..\nymi-sdk\windows\csharp\sdkSample\SDK_Sample
folder. The application prompts you for the configuration parameters that are unique to your
environment.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 6

Configure the Development Terminal

Configure the Development Terminal

On the development terminal, install the Nymi software and the required certificates.

SDK Package
The SDK package contains the following files

• ..\nymi-sdk\windows/i686 - Contains the NAPI dll file for i686 user terminals.
• ..\nymi-sdk\windows\sampleApps - Contains sample Nymi-enabled Applications(NEAs).
• ..\nymi-sdk\windows\x86_64- Contains the NAPI dll file for i686 user terminals.
• ..\nymi-sdk\windows\setup\BleDriver_x64.msi - 64-bit Bluegiga driver installation file.
• ..\nymi-sdk\windows\setup\BleDriver_x86.msi - 32-bit Bluegiga driver installation file.
• ..\nymi-sdk\windows\setup\NymiRuntime-5.9.1.8.msi - Nymi Runtime MSI installation file.
• ..\nymi-sdk\windows\setup\Nymi Runtime installer.version.exe - Nymi Runtime installation

file.

Importing the Root CA certificate
Perform the following steps only if the Root CA issuing the NES TLS server certificate is not a Trusted
Root CA (for example, if a self-signed TLS server certificate is used for NES). Install the Root CA on
each user terminal to support the establishment of a connection with the NES host.

About this task
While logged into the user terminal as a local administrator, use the certlm application to import the
root CA certificate into the Trusted Root Certification Authorities store. For example, on Windows 10,
perform the following steps:

Procedure

1. In Control Panel, select Manage Computer Certificates.

2. In the certlm window, right-click Trusted Root Certification Authorities, and
then select All Tasks > Import.
The following figure shows the certlm window.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 7

Configure the Development Terminal

Figure 2: certlm application on Windows 10

3. On the Welcome to the Certificate Import Wizard screen, click Next.
The following figure shows the Welcome to the Certificate Import Wizard screen.

Figure 3: Welcome to the Certificate Import Wizard screen

4. On the File to Import screen, click Browse, navigate to the folder that contains the root
certificate file, select the file, and then click Open.

5. On the File to Import screen, click Next.
The following figure shows the File to Import screen.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 8

Configure the Development Terminal

Figure 4: File to Import screen

6. On the Certificate Store screen, accept the default value Place all certificates
in the following store with the value Trusted Root Certification
Authorities, and then click Next.

7. On the Completing the Certificate Import Wizard screen, click Finish.

Installing the Nymi Runtime
Perform the following steps to install Nymi Runtime.

Procedure

1. Extract the Nymi SDK package to the development machine.

2. with c#, C, or C++ , copy the nymi_api.dll file from the ..\nymi-sdk\windows\x86_64 directory to the
Visual Studio working directory.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 9

Configure the Development Terminal

Note: In a remote environment where the NEA is running on a different machine than the runtime,
Visual c++ 2013 and 2015 redistributables must be installed.

3. From the ..\nymi-sdk\windows\setup folder, run the Nymi Runtime Installer 5.8.x.y.exe file.
Where x.y is the version number.

Note: In a physical environment, when you install the Nymi Runtime, accept all the defaults.
For a virtual environment, install the Nymi Bluetooth Endpoint component only on the
development machine. In a virtual environment, install the Nymi Runtime on the machine
designated as the centralized Nymi Agent, and only install the Nymi Agent component.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 10

Creating NEAs with NAPI

Creating NEAs with NAPI

Customer and partner developers can use the NAPI to develop Nymi-enabled Application (NEAs)
in programming languages, such as Java or C#. The API is written in JSON. This chapter provides
information about the supported operations.

To deploy an NEA, developers must install the Nymi Runtime on each terminal where the NEA
runs. The Nymi Runtime includes the following components: Nymi Bluetooth Endpoint, and
Nymi Agent.

Note: In this document, the use of device refers to the Nymi Band.

Overview of NAPI
NAPI makes use of the following components.

• request()—Function call that is used to send messages from the NEA to NAPI. NAPI performs the
operation that is contained in the message. NEA supplies the request message in a memory buffer.
Before the call returns, NAPI creates a copy of the message.

• response() - NAPI provides the results of the request() operation through a response.
• Notifications - System-generated messages that provide information about state changes in the

environment. Notifications are not generated in response to a request().
• update()— Function call that an NEA uses to retrieve response() messages and notifications from

NAPI. After the function returns, NAPI expects the NEA to copy the response message out of the
memory address provided by the update() call, before calling the update() function again.

Call Concurrency
NAPI has two FIFO (First-In, First-Out) message queues.

• Device queues—One message queue exists for each Nymi Band. When NAPI receives a device-
related message, NAPI dispatches the message to the appropriate device message queue, in the order
that the message is received. NAPI might dispatch messages to a device before dispatching messages
that have been queued longer, to another device.

• Non-device queue—One global message queue that stores messages that are not related to a device
operation, for example, the response for an init() call. NAPI dispatches non-device related messages
to the queue in the order that the messages are received.

request() function
Request messages are received by NAPI in JSON format as a null-terminated string argument to
request().

The declaration for the request() function in C is as follows.

typedef int (*WINAPI REQUEST_FUNC_POINTER)(const char*);
REQUEST_FUNC_POINTER request = NULL;

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 11

Creating NEAs with NAPI

The following diagram shows the request() call and message handling workflow for device operations.

Figure 5: Request function workflow

1. Create the request in a memory buffer and pass the request to NAPI.
2. NAPI creates a copy of the request message.
3. NAPI initiates the requested operation.

The request() call returns 0 when NAPI accepts the message and returns a 1 when the NEA has not
been initialized. The NEA must run the init operation before NAPI can accept any messages other
than init.

The request message is a null-terminated string containing a JSON object with the following key-value
pairs:

 {
 "operation": "operation_name",
 "exchange": "exchange_string",
 "payload": {
 "property_name": "property_value",
 "property_name1": "property_value1"
 …
 "property_nameX": "property_valueX"
 }
 }

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 12

Creating NEAs with NAPI

where:

• operation_name defines the operation for NAPI to perform. For example, init, assert_identity, and
lookup.

• Exchange_string

NAPI sends response messages and notifications to a memory buffer. There is only one response
queue, and requests are not tracked against their original threads.

Define an exchange value in the request_obj to match the requests that are sent from various threads
to the responses that are received on the update thread.

update() function
Use the update function to retrieve responses for requests and system notifications from NAPI.

The declaration for the update function is as follows:

typedef const char* (WINAPI* UPDATE_FUNC_POINTER)(int timeout_ms);
UPDATE_FUNC_POINTER update = NULL;

Where timeout_ms is an integer value that represents the number of milliseconds (ms) that the update
function waits for a response before timing out.

Ensure that you do not call update simultaneously on two threads.

Results

The update function returns a pointer to a JSON message as an UTF-8 string. The string has one of the
following values:

• Empty string, when a timeout occurs
• Valid JSON string

Response Messages and Notifications
There are two types of responses.

• Responses are messages that are generated as a result of an request operation that was previously
submitted to NAPI. Response messages include the same operation, exchange, and status values as
the original request message.

• Notifications are system-generated messages that provide information about state changes in the
environment. Notifications are not generated in response to a request made by a function call.

Examples of notifications include:

• When the Presence of a Nymi Band changes, for example, when the Nymi Agent authenticates
a Nymi Band.

• When a Nymi Runtime error occurs.

The update function retrieves the notifications and responses from memory. Before the response appears
in the update queue, the system requires time to process the request and generate the response. Call the
update function on a single thread, to maintain one centralized place that handles all update responses.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 13

Creating NEAs with NAPI

IMPORTANT: In large environments, call update() frequently to avoid the loss of responses and
notifications.

A response message appears in the following format:

 {
 "operation":"operation_value",
 "payload": {
 "property_name": "property_value",
 "property_name1": "property_value1",
 …
 "property_nameX": "property_valueX"
 }
 "status": 0 or error_code,
 "error": {
 "error_description": "error_description",
 "error_specifics": "specific error description"
 }
 }

Consider the following:

• operation always appears in the response and the value depends on the reason for the response.

• For a request response, the operation_value matches the operation_value in the request.
• For a notification response that is the result of an error, the operation_value is error.

• payload always appears in the response. If the payload does not contain properties or the response
results in an error, the payload will appear empty. For example, "payload": {}.

• status is 0 when the operation is successful and an integer value that is greater than zero when the
operation fails.

• error always appears in the response and the value depends on the reason for the response.

• If the response is the result of a successful request, error is empty. For example, "error": {}.
• If the response is the result of a failed request or error notification, status displays an error

code, and error contains descriptive information about the failure. See Error Handling for more
information.

Error Handling
The update function retrieves errors in the following scenarios.

• When a request operation fails:

• response contains a non-zero "status"
• error contains information about the failure.For example, when the assert_identity request was

called with an incorrect nes_url value.
• When an update receives a notification response from NAPI as the result of a runtime error, the

operation value is "error". For example, when the BLE adapter is removed from the USB port.

Notifications and response messages that result in an error appear in the following format:

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 14

Creating NEAs with NAPI

 {
 "operation": "operation_value",
 "exchange": "null" or "exchange_value",
 "payload": {}
 "status": status_code,
 "error": {
 "error_description": "general error description",
 "error_specifics": "specific error description"
 }
 }

where:

• operation_value provides the operation value for the response or notification. For a response, the
value is the same value that appeared with the request. For a notification, the value is error.

• payload does not contain any properties.
• exchange contains the user-defined exchange value, as it appeared in the request. If an exchange

value was not specified in the request, the exchange value is null.
• status_code provides the status code that is associated with the error. See the Status codes table for

more information
• error_description provides the description of the error that is associated with the status code.
• error_specifics provides additional information about the source of the error. For example, when a

request specifies invalid parameters.

The following table summarizes the values that can appear in the status_code and error_description.

Status Code
Nymi provides you with status codes that assist you in solving SDK code-related issues and errors.

Table 1: Status codes

Status code Error description

0 Applies to all operations to indicate success.

1000 Applies for all operations and indicates that the request operation was made with
invalid JSON.

1100 Applies to any operation that is called before an init request. Indicates that request
other than init request was sent before initialization.

1110 Appears for an init request and indicates that theinit request was sent when the API
has already been successfully initialized.

1200 Appears for an init request, when the NAPI cannot connect to NES, for example,
when the NES URL was not specified in init request.

2000 Appears when a request operation was made with invalid parameters.

2102 Appears when a request and the Nymi Band ID value that is specified for the device
property does not exist. This is a permanent error, retries will fail.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 15

Creating NEAs with NAPI

Status code Error description

2200 Appears when a lookup and assert_identity request is made but NAPI cannot
communicate with NES value that is specified in nes_url property.

2201 Appears when a intent, lookup, and assert_identity request is made but the requested
query was not found on NES.

3000 Appears for any request operation and indicates that the operation timed out. Retry
the operation.

3010 Appears for any request operation and indicates that the operation was interrupted.
For example, when the battery dies.

3100 Appears for any request operation and indicates that the operation was made while
the Nymi Band was in an invalid state.

4000 Notification to indicate that NAPI cannot connect to Nymi Agent . When you see
this error, requests fail until update retrieves a reconnection notification.

4010 Appears for any request operation and indicates that the operation was made while
NAPI is disconnected from Nymi Agent.

5000 Notification to indicate that NAPI cannot connect to the Bluetooth Adapter.

5010 Notification to indicate that the Bluetooth Adapter is missing.

5100 Notification to indicate that the Nymi Bluetooth Endpoint is missing or
stopped.

6000 Appears for any request operation and indicates that a temporary, recoverable error
has been generated by the Nymi Band. The Nymi Band cannot currently perform the
operation, but the operation might succeed if the NEA tries the operation again.

7000 Appears for any operation and indicates that an error the Nymi Band generated an
error. For example, when emory is full.

8000 Appears for an init request when the payload is missing the token and nes_url
properties.

8001 Appears for an init request when the when certificates cannot be stored.

8002 Appears for an init request when the L1 certificate is missing the organization name.

8100 Appears for an init request when the payload is missing the otp property.

9000 Appears for an request when an error occurred. See the error_specifics property for
more details.

Note: Status codes 1000 and 2000, should be considered the same as they indicate a messaging issue
(for example, invalid JSON).

Example: Workflow for Nymi Band Tap
The following image provides an overview of the calls and interactions between the NEA and NAPI
when a Nymi Band user performs an NFC of BLE tap of the Nymi Band, while performing an
authentication operation in the NEA.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 16

Creating NEAs with NAPI

Note: The workflow assumes that the NEA has already called init() and the response contained a status
of 0.

Figure 6: Workflow of operations during a tap

In this diagram, the following activities occur:

1. The Nymi Band user opens the NEA and performs a tap.
2. The update function in the NEA retrieves an intent notification. The payload of the notifcation

contains the Nymi Band ID.
3. The NEA perform an assert_identity request and the device property in the payload specifies the

Nymi Band ID that was in the intent notification.
4. The update function in the NEA retrieves an assert_identity notification.

• If the the assert_identity request is successful (status is 0), the response contains the username and
domain, and user status (if the Check User Status option is enabled in NES policy).

• If the Nymi Band is not present or not authenticated the assert_identity request fails and the
response contain a non-zero status value.

5. The NEA provides the appropriate result for the authentication task. For example, the e-signature
completes.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 17

Creating NEAs with NAPI

Preparing the C/C++ project to use NAPI
Before you can use NAPI, perform the following steps on the development machine, to load, initialize,
and import the NAPI functions into the NEA project.

About this task

Procedure

1. Create a new C/C++ project in Visual Studio.

2. Add nymi_api.dll to the project.

3. Define the following functions in the header file:

 typedef int (WINAPI* REQUEST_FUNC_POINTER)(const char*);
 typedef const char* (WINAPI* UPDATE_FUNC_POINTER)(int timeout_ms);
 REQUEST_FUNC_POINTER request = NULL;
 UPDATE_FUNC_POINTER update = NULL;

4. Create an init function in a C/C++ file with the following:

 void init() {
 HINSTANCE hDll = LoadLibrary("Path to NAPI DLL folder");
 if (hDll) {
 request = (REQUEST_FUNC_POINTER) GetProcAddress(hDll, "request");
 update = (UPDATE_FUNC_POINTER) GetProcAddress(hDll, "update");
 }
 }

5. Call the init function from your code.

6. Next verify the initialization was successful (request and update are not NULL).

7. Call the request function and init theNymi-enabled Application:

 request ("{\"operation\": \"init\", \"payload\":{\"nea_name\": \"application_name\",
 \"nes_url\": \"https://nes.server.com/NES\",\"token\": \"TokenBearerString\"}}");

Note: If the request function successfully sends a message to NAPI, a value of 0 is returned. When
a NAPI initialization has not occurred, and you send any request other than the init request, the
request fails and returns a value of 1. Use the update function to retrieve details about the request. For
more information about how to use the update function, see the update Function section in this guide.

8. Use the update function to retrieve details about the initialization status. A string is returned to you
with and error or a ble_ready status.
NAPI is now initialized and operations can be performed.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 18

Creating NEAs with NAPI

Preparing the C# project to use NAPI
Before you can use NAPI, perform the following steps on the development machine, to load, initialize,
and import the NAPI functions into the NEA project.

About this task

Procedure

1. Open the NEA project in Visual Studio.

2. Add nymi_api.dll to your C# project and copy the nymi_api.dll file to the working directory.

3. Create a class to wrap the NAPI functions.

4. Define the name of the NAPI library (nymi_api.dll) in your class as follows.

 private const string DllName = "nymi_api.dll";

5. Import the request and update functions from nymi_api.dll into your class as follows.

 [DllImport(DllName, EntryPoint = "request")]
 static extern Int32 request(string message);

 [DllImport(DllName, EntryPoint = "update")]
 static extern IntPtr update(int timeout_ms);

6. Initialize NAPI in your NEA project by calling the request function as follows.

 request ('{"operation": "init", "payload":{"nea_name": "application_name", "nes_url": "https://
nes.server.com/NES", "token": "TokenBearerString"}}')

Note: If the request function successfully sends a message to NAPI, a value of 0 is returned. When
a NAPI initialization has not occurred, and you send any request other than the init request, the
request fails and returns a value of 1. Use the update function to retrieve details about the request. For
more information about how to use the update function, see The update Function.

7. Use the update function to retrieve details about the initialization status.

8. Enter the following lines to import the update function from the nymi_api.dll and to declare the
update function.

 [DllImport(DllName, EntryPoint = "update")]
 static extern IntPtr update(int timeout_ms);

The update function returns the responses to request operations, presence notifications, and error
notifications.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 19

Creating NEAs with NAPI

9. Convert the pointer that is returned by the update function to a C# string:

 var p = update(Timeout);
 var s = Marshal.PtrToStringAnsi(p);

Acquire an Authentication Token
The first operation that the NEA must call is an init operation with an authentication token, that you
retrieve from NES.

You can access NES by using one of the following endpoints to acquire the initial token:

• Basic Authentication
• Basic Authentication with cookies

Basic Authentication (https://AS_url/api/BasicLoginWithToken)

This endpoint requires you to pass the user credentials in the authorization header.

A successful call performs the following two actions:

1. Returns one of the following outputs:

• When Accept Header is set to application/xml or application/shtml+xml, the following xml
output:

 <LoginWithTokenResult xmlns:i="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://
schemas.datacontract.org/2004/07/Providers.Interfaces">
 <Success>true</Success>
 <Token>
 …
 </Token>
 </LoginWithTokenResult>

• When the Accept header is not defined, the following JSON string:

 {"Success"="true", "Token"="<token>"}

2. Passes the token in the WwwAuthenticate header.

Basic Authentication with Cookies (https://AS_url/api/BasicLoginWithCookies)

This endpoint requires you to pass the user credentials in the authorization header.

A successful call:

• Returns the following JSON string:

{"Success"="true", Cookies={"cookie1": "value1", "cookie2": "value2"}}

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 20

Creating NEAs with NAPI

• Pushes the token as a NymiAuth cookie.

Negotiate Login with Token (https://AS_url/api/NegotiateTokenWithLogin

This endpoint does not require you to pass user credentials in the authorization header, but requires each
user terminal and NES to access the same AD for centralized authentication. The method that you use is
specific to the language that you use to develop the NEA.

init operation
The init operation initializes NAPI, configures communication channels between components, and
performs certificate enrollment when required. Ensure that init is the first operation that is requested by
the NEA. When the init operation succeeds, it is not necessary to call init again.

Initialization Options

There are two ways to call the init operation when initializing with certificate enrollment.

• nea_name
• nea_name + nes_url + token

JSON Object Format

Define the JSON payload for the init in the following format.

 {
 "operation": "init",
 "exchange": "exchange_value",
 "payload": {
 "nea_name": "name_of_application",
 "nes_url": "https_url_to_nes",
 "token": "token",
 "log_path": "path",
 "url": "ws://agent_server:9120/socket/websocket",
 }
 }

where:

• name_of_application is the name that you assign to the NEA and is always required.
• nes_url field is the URL for the NES website application. You require this parameter in the first init

call. The format of the URL is https_url_to_nes
• token is an HTTP Bearer token that NES uses to authenticate the NEA user or computer. This

parameter is optional. If you will use this parameter, you must specify it in the first init call. Obtain
the token as described in the Appendix.

• path is the log file path on the development machine. If you do not specify the path property, the
NEA uses the default log path, which is your current working directory.

• url is required when you are using a centralized Nymi Agent, and agent_server specifies the
hostname of the machine that runs the Nymi Agent service.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 21

Creating NEAs with NAPI

Example

The following code block provides an example of a JSON object that instructs NAPI to
initialize the NEA.

 {
 "operation": "init",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1211",
 "payload": {
 "nea_name": "NEAs",
 "nes_url": "https://server-2.nymi.lab/nes",
 "token": "eyJVc2VyVG9rZW5TdHJpbmciOiJMbk..",
 "url": "ws://agent.nymi.com:9120/socket/websocket"
 }
 }

Results

A successful init operation produces a response with the following properties.

 {
 "operation": "init",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1211",
 "payload": {}
 "status": 0,
 "error": {}
 }

An unsuccessful init operation generates a non-zero status.

The following table summarizes the status codes that can appear, and the payload properties that you
require for a subsequent init call.

Table 2: Init Status Codes

Status code Payload properties for subsequent init call

0 Operation completed successfully with the defined
payload. The system is initialized. Additional calls to
init are not required.

11xx Operation completed successfully with the defined
payload. When a request other than init is sent before
the system is initialized, the system returns a status
code 1100. If the system was already initialized, but
a request for init was sent, the system returns a status
code 1110.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 22

Creating NEAs with NAPI

Status code Payload properties for subsequent init call

8000 Payload is missing the token and nes_url property
definitions. Call init again and include the token and
nes_url properties, in addition to the nea_name.

9000 There was an issue with the certificate from NES.
Contact the NES Administrator for assistance.

The following flowchart provides an overview of how you can use NAPI responses to an init call, to
determine the properties that you need to include in the payload file.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 23

Creating NEAs with NAPI

Figure 7: NAPI response calls to init

Initialization error notifications
After initialization of the API, and init() request results in a status of 0, NAPI might disconnect from
the Nymi Agent, which results in update() retrieving an error notification similar to the following
example.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 24

Creating NEAs with NAPI

 {
 "operation": "error",
 "exchange": null,
 "payload": {},
 "status": 4000,
 "error": {
 "error_description": "Nymi Agent missing.",
 "error_specifics":""
 }
 }

When a disconnect occurs, NAPI automatically attempts to reconnect to Nymi Agent. Any requests
that an NEA performs fails until the NEA retrieves a reconnection notification.

A reconnection notification with a status of zero. The follownig provides an example of a successful
reconnection notification:

 {
 "operation": "reconnection",
 "exchange": "null",
 "payload": {},
 "status": 0,
 "error": {}
 }

Bluetooth notifications
Nymi Bluetooth Endpoint is a client service that communicates with the Bluetooth Adapter. Bluetooth
notifications for Bluetooth Adapter status are non-transactional.

The Bluetooth Adapter communicates to the Nymi Band. Each time that a Bluetooth Adapter becomes
available, the update function retrieves a notification in the following format.

 {
 "operation": "ble_ready",
 "exchange": null,
 "status": 0,
 "payload": {},
 "error ": {}
 }

If a Bluetooth Adapter becomes unavailable, the update function retrieves an error notification in the
following format.

 {
 "operation": "error",
 "exchange": null,
 "payload": {},
 "status": "error_code",
 "error": {

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 25

Creating NEAs with NAPI

 "error_description":"error_description>",
 "error_specifics":"error_specifics"
 }
 }

where error_code is one of the following values: 5000, 5010, 5100.

For more information about error codes, see Error Handling.

presence operation
Using the presence request, you can retrieve the current state of the Nymi Band. Presence requests are
non transactional. The presence request has no response and a presence response is not tied to a specific
request.

When a presence request is sent, the system will replay the last presence update received. When
a presence state changes you will receive automatic notifications. For information about these
notifications, see Presence notifications.

Presence is relative to an endpoint (the response indicates if the Nymi Band is in range of the NEA).
A Nymi Band can be present on some endpoints, but absent on others. If the presence state is false the
presence state returns as absent.

JSON Object Format

Define the presence request JSON object in the following format.

 {
 "operation": "presence",
 "exchange":"exchange_value",
 "payload": {
 "device": NymiBandID
 }
 }

Table 3: Presence Payload

Properties Value Description

Device device The Nymi Band MAC address.

State The value named state has a string value.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 26

Creating NEAs with NAPI

Properties Value Description

absent The state is not detected. A Nymi Band that has
not been reported on* should be considered the
same as a Nymi Band that has most recently been
reported absent. A Nymi Band that has an
absent state may be unheard from for a certain
length of time.

Note: * reported on refers to a) The Nymi Band
is connected via BLE and is present. b) It has sent
a BLE advertisement to the endpoint within the
last 30 seconds.

unauthenticated Nymi Band is not authenticated (may or may
not have authenticators enrolled). A Nymi Band
that is not authenticated may be on-body and
unauthenticated or is being charged.

weak Nymi Band is in an authenticated state. The
advertisement authentication code is not verified.

Presence Notifications

When NAPI detects a change in Nymi Band presence, NAPI generates a presence notification.

After init(), the update function retrieves a sequence of presence notifications, one for each Nymi Band
that is present within range of the Bluetooth adapter. Presence updates are non-transactional. The system
will return any changes to presence).

It is recommended that you develop a method for your application that tracks when the Nymi Bands
come in and out of range.

Presence notifications appear in the following format:

 {
 "operation":"presence",
 "exchange":null,
 "status":0,"
 payload":{
 "device": "NymiBandID",
 "proximity" : "proximity value",
 "service_request_state" : "service request state",
 "state" : "state"
 },
 "error":{}
 }

where:

• proximity_value: determined by the distance between the Nymi Band and the BLE adapter. The
proximity_value will change when the Nymi Band moves closer or farther from the BLE adapter.
The threshold (distance) for the proximity_value is determined in the nbe.toml file.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 27

Creating NEAs with NAPI

Note: To edit the nbe.toml file, refer to Editing the nbe.toml File.
• state: determined by the state of the Nymi Band; weak, absent, or unauthenticated.
• service request state: a flag that accompanies each presence notification and determines

if there is a message in the Nymi Band that is ready to be downloaded. If the value of
service_request_state is not zero, the Nymi Band has service level messages. If the value is
'0', there are no messages

Note: If the payload contains only the device, no response is returned for this operation. A notification
is returned, which is not tied to any request and does not contain any values.

Table 4: Proximity values for presence notifications

Proximity
values

Definition Example: Nymi Lock Control Behavior

4 The BLE adapter does not
detect the Nymi Band.

For example, the user may be in another room.

When the user enters the BLE adapter range, the proximity_value
will go from 4 to 3. Nymi Lock Control does not perform any
actions.

When the user leaves the BLE adapter range, the proximity_value
goes from 3 to 4. Nymi Lock Control does not perform any
actions.

3 The BLE adapter detects the
presence of the Nymi Band.

For example, the user is in the same room as their user terminal.

When the user moves closer to the BLE adapter, the
proximity_value will go from 3 to 2. Nymi Lock Control does not
perform any actions.

When the user moves further from the BLE adapter, the
proximity_value goes from 2 to 3. Nymi Lock Control locks the
user terminal if it is unlocked.

2 The BLE adapter is close to
the Nymi Band.

For example, the user is near their user terminal.

Nymi Lock Control keeps the user terminal unlocked while the
user remains within this range (proximity_value is 2 or less). While
Nymi Lock Control is enabled, the user may press the Enter key or
the space bar on their keyboard to unlock their user terminal.

When the user moves the Nymi Band closer to the BLE adapter,
the proximity_value goes from 2 to 1. Nymi Lock Control will
allow the user to access their user terminal without entering their
credentials.

When the user moves the Nymi Band further from the BLE
adapter, the proximity_value goes from 1 to 2.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 28

Creating NEAs with NAPI

Proximity
values

Definition Example: Nymi Lock Control Behavior

1 The BLE adapter and the
Nymi Band are in very close
range.

For example, the user may be sitting at their user terminal.

When the user moves the Nymi Band closer to the BLE adapter,
the proximity_value goes from 1 to 0. This initiates a tap intent.

When the user moves the Nymi Band away from the BLE adapter,
the proximity_value goes from 0 to 1. This ends a tap intent.

0 The BLE adapter and the
Nymi Band are adjacent
(within 4 inches or 10 cm).

For example, the user places their Nymi Band on top of their BLE
adapter.

A tap intent is in progress and indicates a task.

Table 5: State values for presence notifications

State Value Definition

Absent The Nymi Agent cannot communicate with the Nymi Band. This
state also applies when a user wears an unenrolled Nymi Band.

Reasons for Nymi Band absence include:

• Nymi Band has been removed from the body.
• Nymi Band has not communicated with the Nymi Agent for at

least 30 seconds.
• Nymi Band has not been within the range of the BLE Adapter for at

least 30 seconds.

Unauthenticated Nymi Band is enrolled and but not authenticated.

Weak Nymi Band is in an authenticated state.

Intent Notification

An intent occurs when a user taps their authenticated Nymi Band next to an NFC reader or Bluetooth
radio antenna, and is used to signal an intent to take an action. For example, an intent to provide an e-
signature is generated when a user taps their authorized Nymi Band against an NFC reader.

To ensure that intent notifications are received, specify the NES server in the init message.

Intent notifications appear in the following format:

 {
 "operation": "intent",
 "exchange": null,
 "payload": {
 "device": "NymiBandID",
 "type": "see below",
 },

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 29

Creating NEAs with NAPI

 "status": 0,
 "error": {}
 }

where device is the Nymi Band MAC address.

type is used to identify the manner in which the action was initiated.

type field description

ble A user tapped an authenticated Nymi Band against a
BLE device or is in close proximity to a BLE radio
antenna, such as a BLE adapter.

nfc A user tapped an authenticated Nymi Band against an
NFC reader or is in close proximity to read range of the
NFC reader.

Status Codes

A 2201 status code is reported when the NFC reader is unsuccessful at mapping the NFC ID to the
enrolled Nymi Band.

A 2200 status code is reported when a NES communication error (for example, NES is offline) occurs.

Note: The 2201 and 2200 status codes do not contain a NymiBandID in the payload.

assert_identity operation
The assert_identity operation provides an NEA with the ability to confirm that a Nymi Band that is
assigned to a specific user is authenticated and within Bluetooth range.

The assert_identity operation completes a cryptographic handshake with the Nymi Band and verifies
user/band identity.

Note: The Nymi Band must be in an authenticated state when you call the assert_identity operation.

Define the assert_identity JSON object in the following format.

 {
 "operation": "assert_identity",
 "exchange": "exchange_value",
 "payload": {
 "nes_url": "https_url_to_nes",
 "device": "NymiBandID",
 "assert_type": "assert_user"
 }
 }

where:

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 30

Creating NEAs with NAPI

• nes_url field is optional if not provided it uses what is configured for the Nymi Agent. See the
Configuration Overview.

• NymiBandID is the Nymi Band (or device) ID value that is returned in the lookup result.

Example

The following code block provides an example of a JSON object that instructs NAPI to
assert the identity of the user with device ID C2:FA:D7:F0:D7:96.

 {
 "operation": "assert_identity",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "nes_url": "http://nes.nymi.com/nes/",
 "device": "C2:FA:D7:F0:D7:96",
 "assert_type": " assert_user "
 }
 }

assert_identity response
The assert_identity request returns Username and Domain. properties

assert_identity Results

The UserStatus property is an optional property. The UserStatus is stored in the Active Directory (AD).

If the UserStatus option is set in the NES console in the Policies > Active Directory page, the Active
Directory status appears in the assert_identity response. If the option is not set, it does not return in the
response.

The UserStatus option has the following possible values:

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Active|Locked User account is locked. This status can appear with
Password Expired.

Active|PasswordExpired User account has an expired password. This status can
appear with Locked.

The last three properties can be combined into a comma separated list.

By default, NES disables support for user status checks in AD. Contact the NES Administrator to
enable AD user status checking, and optionally the checking interval in the NES Administrator
Console.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 31

Creating NEAs with NAPI

A successful assert_identity operation produces a response with the following properties.

 {
 "operation": "assert_identity",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_5555",
 "payload": {
 "Username": "Jsmith",
 "Domain": "Corp"
 "UserStatus": "Active"

 },
 "status": "0",
 "error: {}
 }

lookup
Use the lookup operation to determine the following values:

• Device ID (MAC address) of the Nymi Band.

Note: An intent notification includes the device ID or you can retrieve the device ID of a Nymi
Band from NES by using the lookup operation.

• NfcUID of the Nymi Band.
• Domain and name of the user.
• User status in Active Directory (AD). The AD status for a user appears in the response when user

status check is enabled in NES. The following table summarizes the possible user statuses.

Table 6: AD user statuses

User Status Definition

Active User account is enabled.

NotExist User account was deleted from AD.

Inactive User account is disabled.

Active|Locked User account is locked. This status can appear with
Active and Password Expired.

Active|PasswordExpired User account has an expired password. This status
can appear with Active and Locked.

By default, NES is not configured to perform user status checks in AD. Contact the NES Administrator
to enable AD user status checking, and optionally the checking interval in the NES Administrator
Console.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 32

Creating NEAs with NAPI

JSON Object Format

Define the payload JSON object for the lookup command in the following format.

 {
 "operation": "lookup",
 "exchange": "exchange_value",
 "payload": {
 "nes_url": "https_url_to_nes",
 "query": "query_JSON",
 "lookup_keys": "key_JSON"
 }
 }

where:

• nes_url the NES URL.
• query field is a JSON object that defines the values that are passed during the request to retrieve the

response. Acceptable values include NfcUID, Domain and Username, and NymiBandID.

Note: The property names Domain and Username are case-sensitive.
• lookup_keys field is a JSON array that contains a list of values that you want to appear in the

response. Supported values include NfcUID, Domain and Username, NymiBandID, and UserStatus.

Example 1

The following code block provides an example of a JSON object that instructs NAPI
to provide the NfcUID of a device and the user status for a user named JSmith in the
MyCorpDomain domain.

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "Domain":"MyCorpDomain",
 "Username": "JSmith"
 }
 "lookup_keys": ["NfcUID", "UserStatus"]
 }
 }

Results 1

A successful lookup operation produces a response with the following properties.

In this example, the check user status in AD option is enabled in NES, as a result, the response includes
the UserStatus property.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 33

Creating NEAs with NAPI

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values":{"NfcUID": "1234xyz", "UserStatus":"Active|PasswordExpired"},
 },
 "status": "0",
 "error: {}
 }

Example 2

The following code block provides an example of a JSON object that instructs
NAPI to provide the NfcUID of a device with Nymi Band (or device) ID
"C2:FA:D7:F0:D7:96".

 {
 "operation": "lookup",
 "exchange": "rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "nes_url": "https://nes.nymi.com/nes/",
 "query": {
 "NymiBandID": "C2:FA:D7:F0:D7:96"
 }
 "lookup_keys": ["NfcUID"]
 }
 }

Results 2

A successful lookup operation produces a response with the following properties.

 {
 "operation": "lookup",
 "exchange":"rAndOm_IdeNtifyiNG_StrING_1218",
 "payload": {
 "lookup_values": {"NfcUID": "1234xyz"},
 },
 "status": "0",
 "error: {}
 }

device version
Using the device_version request, you can retrieve hardware and firmware version of the Nymi Band.
The Nymi Band can be in any state when the band label request is sent.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 34

Creating NEAs with NAPI

JSON Object Format

Define the presence request JSON object in the following format.

 {
 "operation":"get_device_version",
 "payload":{
 "device": "00:00:00:00:00:01"
 },
 "exchange":"ID"
 }

Device Version Response

Field Definition

fw_version U

hw_version AD

exchange U

subscribe operation
The subscribe_endpoint operation allows an NEA to change the Nymi Bluetooth Endpoint to
which it is subscribed.

subscribe_endpoint request operations appear in the following format:

 {
 "operation": "subscribe_endpoint",
 "exchange":"exchange_value",
 "payload": {
 "endpoint_id": "bar"
 }
 }

where:

• operation is subscribe_endpoint.
• exchange is any value and is used to match the response to the request.

payload:

• endpoint_id is based on the endpoint IP address. Required when the configuration uses a centralized
Nymi Agent.

The subscribe_endpoint operation returns a status code only, no errors are returned.

 {
 “operation”: “subscribe_endpoint”,
 "exchange":"exchange_value",
 “payload”: {}

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 35

Creating NEAs with NAPI

 “status”: 0,
 “error”: {}
 }

An NEA can only be subscribed to one endpoint at any given time. When a subscribe operation is
requested, the NEA is automatically unsubscribed from the endpoint it was previously subscribed to.
If any Nymi Bands were present on that endpoint, they will become absent, and the NEA will receive
corresponding presence update notifications. The NEA will then receive a Bluetooth status notification.
If the requested Nymi Bluetooth Endpoint has connected successfully and is in a ready state, the NEA
will receive a ble_ready notification, followed by presence update notifications for any present bands on
that endpoint. Otherwise, the NEA will receive an error message. See Bluetooth Notifications for more
information about possible error messages.

Note: The NEA will remain subscribed to the requested endpoint_id even if it is not able to connect
to that Nymi Bluetooth Endpoint. If the Nymi Bluetooth Endpoint becomes ready at a later time (for
example, that workstation is powered on), the NEA will receive a ble_ready message at that time.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 36

Troubleshooting

Troubleshooting

Nymi API writes information to log files that allow you to monitor and troubleshoot the NEA.

For additional assistance, visit the Support page on the Nymi website, or contact your Nymi Solution
Consultant.

The following table summarizes the log files that are available for troubleshooting.

Table 7: Log file locations

Component Log location Files

Nymi API By default, the current working
directory.

nymi_api.log

Nymi Agent C:\Nymi\NymiAgent nymi_agent.log

Nymi Bluetooth
Endpoint

C:\Nymi\Bluetooth_Endpoint
\logs

nymi_bluetooth_endpoint.log

Enable debug mode
When testing NAPI and builds, set the NYMI_DEBUG environment variable to any value to enable
debug logging, and the restart the Nymi Agent and Nymi Bluetooth Endpoint services.

Copyright ©2022 Nymi Connected Worker Platform Nymi SDK for C Developer's Guide v1.0 37

https://support.nymi.com/hc/en-us/requests/new

Copyright ©2022
Nymi Inc. All rights reserved.

Nymi Inc. (Nymi) believes the information in this document is accurate as of its
publication date. The information is subject to change without notice.

The information in this document is provided as-is and Nymi makes no representations or
warranties of any kind. This document does not provide you with any legal rights to any
intellectual property in any Nymi product. You may copy and use this document for your
referential purposes.

This software or hardware is developed for general use in a variety of industries and
Nymi assumes no liability as a result of their use or application.Nymi, Nymi Band, and
other trademarks are the property of Nymi Inc. Other trademarks may be the property of
their respective owners.

Published in Canada.
Nymi Inc.
Toronto, Ontario
www.nymi.com

http://www.nymi.com

	Contents
	Nymi SDK Overview
	Development Tools
	Supported Platforms
	Supported NFC Readers
	NEA Certificates
	Sample Application

	Configure the Development Terminal
	SDK Package
	Importing the Root CA certificate
	Installing the Nymi Runtime

	Creating NEAs with NAPI
	Overview of NAPI
	Call Concurrency
	request() function
	update() function
	Response Messages and Notifications
	Error Handling
	Status Code

	Example: Workflow for Nymi Band Tap

	Preparing the C/C++ project to use NAPI
	Preparing the C# project to use NAPI
	Acquire an Authentication Token
	init operation
	Initialization error notifications
	Bluetooth notifications
	presence operation
	Presence Notifications

	Intent Notification
	assert_identity operation
	assert_identity response

	lookup
	device version
	subscribe operation

	Troubleshooting
	Enable debug mode

